DOI QR코드

DOI QR Code

GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS

  • Wang, Yaning (Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control School of Mathematics and Information Sciences Henan Normal University)
  • Received : 2015.07.09
  • Published : 2016.09.01

Abstract

Let ($M^{2n+1}$, ${\phi}$, ${\xi}$, ${\eta}$, g) be a (k, ${\mu}$)'-almost Kenmotsu manifold with k < -1 which admits a gradient Ricci almost soliton (g, f, ${\lambda}$), where ${\lambda}$ is the soliton function and f is the potential function. In this paper, it is proved that ${\lambda}$ is a constant and this implies that $M^{2n+1}$ is locally isometric to a rigid gradient Ricci soliton ${\mathbb{H}}^{n+1}(-4){\times}{\mathbb{R}}^n$, and the soliton is expanding with ${\lambda}=-4n$. Moreover, if a three dimensional Kenmotsu manifold admits a gradient Ricci almost soliton, then either it is of constant sectional curvature -1 or the potential vector field is pointwise colinear with the Reeb vector field.

Keywords

References

  1. A. Barros, R. Batista, and E. Jr. Ribeiro, Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math. 174 (2014), no. 1, 29-39. https://doi.org/10.1007/s00605-013-0581-3
  2. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Volume 203, Birkhauser, 2010.
  3. C. P. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419-2430. https://doi.org/10.1090/S0002-9939-01-05943-3
  4. C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
  5. J. T. Cho, Almost contact 3-manifolds and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 1, 1220022, 7 pages. https://doi.org/10.1142/S0219887812200228
  6. J. T. Cho and R. Sharma, Contact geometry and Ricci solitons, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 6, 951-960. https://doi.org/10.1142/S0219887810004646
  7. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343-354.
  8. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), no. 1-2, 46-61. https://doi.org/10.1007/s00022-009-1974-2
  9. A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011), no. 8, 647-650. https://doi.org/10.1016/j.chaos.2011.05.015
  10. A. Ghosh, An $\eta$-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen 82 (2013), no. 3-4, 691-598.
  11. A. Ghosh, Certain contact metric as Ricci almost solitons, Results Math. 65 (2014), no. 1-2, 81-94. https://doi.org/10.1007/s00025-013-0331-9
  12. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. https://doi.org/10.4310/jdg/1214436922
  13. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
  14. D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
  15. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), no. 1, 93-103. https://doi.org/10.2748/tmj/1178241594
  16. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint, http://arXiv.org/abs/math.DG/0211159.
  17. P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329-345. https://doi.org/10.2140/pjm.2009.241.329
  18. P. Petersen and W. Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085-2092. https://doi.org/10.1090/S0002-9939-09-09723-8
  19. S. Pigola, M. Rigoli, M. Rimoldi, and M. Setti, Ricci almost solitons, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) 10, (2011), no. 4, 757-799.
  20. R. Sharma, Certain results on K-contact and (k, ${\mu}$)-contact manifolds, J. Geom. 89 (2008), no. 1-2, 138-147. https://doi.org/10.1007/s00022-008-2004-5
  21. R. Sharma, Almost Ricci solitons and K-contact geometry, Monatsh. Math. 175 (2014), no. 4, 621-628. https://doi.org/10.1007/s00605-014-0657-8
  22. Y. Wang, U. C. De, and X. Liu, Gradient Ricci solitons on almost Kenmotsu manifolds, Publ. Inst. Math. 98 (2015), no. 112, 227-235. https://doi.org/10.2298/PIM140527003W
  23. Y. Wang and X. Liu, Ricci solitons on three-dimensional $\eta$-Einstein almost Kenmotsu manifolds, Taiwanese J. Math. 19 (2015), no. 1, 91-100. https://doi.org/10.11650/tjm.19.2015.4094
  24. Y. Wang and X. Liu, Locally symmetric CR-integrable almost Kenmotsu manifolds, Mediterr. J. Math. 12 (2015), no. 1, 159-171. https://doi.org/10.1007/s00009-014-0388-z
  25. Y. Wang and X. Liu, On almost Kenmotsu manifolds satisfying some nullity distributions, submitted.
  26. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970.

Cited by

  1. A New Class of Almost Ricci Solitons and Their Physical Interpretation vol.2016, 2016, https://doi.org/10.1155/2016/4903520
  2. Ricci Almost Solitons on Three-Dimensional Quasi-Sasakian Manifolds pp.2250-1762, 2018, https://doi.org/10.1007/s40010-018-0504-8
  3. The Fischer–Marsden conjecture on non-Kenmotsu $$(\kappa , \mu )^\prime $$(κ,μ)′-almost Kenmotsu manifolds vol.110, pp.1, 2019, https://doi.org/10.1007/s00022-018-0457-8
  4. Some characterizations of Lorentzian manifolds vol.16, pp.01, 2019, https://doi.org/10.1142/S0219887819500166