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ABSTRACT. In the present paper we prove that in an almost Kenmotsu manifold with
generalized (k, p)'-nullity distribution the three conditions: (i) the Ricci tensor of M?"+!
is of Codazzi type, (ii) the manifold M>" ! satisfies div C' = 0, (4ii) the manifold M>"T*
is locally isometric to H""'(—4) x R", are equivalent. Also we prove that if the man-

ifold satisfies the cyclic parallel Ricci tensor, then the manifold is locally isometric to
H7L+1(_4) % R™.

1. Introduction

Geometry of Kenmotsu manifolds was originated by Kenmotsu [13] and became
an interesting area of research in differential geometry. As a generalization of Ken-
motsu manifolds, the notion of almost Kenmotsu manifolds was first introduced by
Janssens and Vanhecke [12]. In recent years, some results regarding such manifolds
we refer the reader to [5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 21, 22]. Almost Ken-
motsu manifolds satisfying the (k, u) and (k, u)’-nullity conditions were introduced
by Dileo and Pastore [10], where k and p both are constants. In 2011, Pastore and
Saltarelli in [14] extend the above nullity conditions to the corresponding general-
ized nullity conditions for which both k£ and i are smooth functions. Recently some
results on generalized (k, u) and (k, 1)'-almost Kenmotsu manifolds satisfying some
conditions are obtained by Wang et al. [20, 21].

Gray [11] introduced two classes of Riemannian manifolds determined by the
covariant derivative of the Ricci tensor; the class A consisting of all Riemannian
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manifolds whose Ricci tensor S is of Codazzi type, that is,
(Vx9)(Y, Z) = (VyS) (X, 2),

for all smooth vector fields X,Y, Z.
The class B consisting all Riemannian manifolds whose Ricci tensor S is cyclic
parallel, that is,

(VxS (Y, 2)+ (VyS)(X,Z2)+ (VzS)(X,Y) =0,

for all smooth vector fields X,Y, Z.
A Riemannian manifold is said to be harmonic Weyl tensor if div C' = 0, where
C' is the Weyl conformal curvature tensor of type (1,3) defined by [22],

C(X,Y)Z = R(X,Y)Z- ﬁ[sm )X — S(X,2)Y +g(Y,2)QX
~g(X, 2)QY)+ 3o oY 2)X — g(X, 2)Y ],

@ is the Ricci operator defined by S(X,Y) = g(QX,Y), r is the scalar curvature
of the manifold and ‘div’ denotes divergence. If div C' = 0, then we get

(VxS)(Y,2) = (Vy8)(X, 2) = 2-[X(r)g(Y, 2) ~ Y (r)g(X, 2)].

A Riemannian manifold is said to be harmonic if div R = 0, which is equivalent to
(VxS)(Y,Z) = (Vy9)(X, 2),

for all smooth vector fields X,Y, Z.

Recently Wang et al. [15] studied conformally flat almost Kenmotsu manifolds
with £ belonging to the generalized (k, p)’-nullity distribution. In 2016, Wang [20]
studied cyclic parallel Ricci tensor in such a manifold . Moreover in [17] Wang et
al. studied ¢-recurrent almost Kenmotsu manifold with generalized (k, u)’-nullity
distribution.

Motivated by the above studies in the present paper we study certain curvature
conditions in generalized (k, 1)’ -almost Kenmotsu manifolds.

The present paper is organized as follows:

In Section 2, we first recall some basic formulas of almost Kenmotsu manifolds,
while Section 3 contains some well-known results on almost Kenmotsu manifolds
with generalized (k, 1)’ -nullity distribution. Section 4 is devoted to study Codazzi
type of Ricci tensor in such a manifold. Next in Section 5 we study almost Ken-
motsu manifolds with generalized (k, u)’-nullity distribution satisfying div C' = 0.
Finally, we study cyclic parallel Ricci tensor on an almost Kenmotsu manifold with
generalized (k, p)'-nullity distribution.
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2. Almost Kenmotsu Manifolds

A differentiable (2n + 1)-dimensional manifold M is said to have a (¢,&,n)-
structure or an almost contact structure, if it admits a (1, 1) tensor field ¢, a char-
acteristic vector field £ and a 1-form 7 satisfying [1, 2],

(2.1) P*=-T+n®E nE) =1,

where I denotes the identity endomorphism. Here also ¢& = 0 and n o ¢ = 0; both
can be derived from (2.1) easily.
If a manifold M with a (¢, &, n)-structure admits a Riemannian metric g such that

(¢ X, 0Y) = g(X,Y) — n(X)n(Y),

for any vector fields X, Y of T, M*" ! then M is said to have an almost contact
metric structure (¢, £, 7, g). The fundamental 2-form ® on an almost contact metric
manifold is defined by ®(X,Y) = g(X, ¢Y) for any X, Y of T, M?"*1. The condition
for an almost contact metric manifold being normal is equivalent to vanishing of the
(1,2)-type torsion tensor Ny, defined by Ny = [¢, @] + 2dn @ £, where [@, ¢] is the
Nijenhuis torsion of ¢. Recently in [9, 10, 20], almost contact metric manifold such
that n is closed and d® = 2n A ® are studied and they are called almost Kenmotsu
manifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold.
Also Kenmotsu manifolds can be characterized by (Vx¢)Y = g(¢X,Y)é—n(Y)opX,
for any vector fields X, Y. It is well known [13] that a Kenmotsu manifold M2+
is locally a warped product I x s N?", where N?" is a Kihler manifold, I is an open
interval with coordinate ¢ and the warping function f, defined by f = ce! for some
positive constant c. Let us denote the distribution orthogonal to £ by D and defined
by D = Ker(n) = Im(¢). In an almost Kenmotsu manifold, since 7 is closed, D
is an integrable distribution. Let M?"*! be an almost Kenmotsu manifold. We
denote by h = $£¢¢ and | = R(-,€)§ on M?" ™' The tensor fields [ and h are
symmetric operators and satisfy the following relations [10]:

(2.2) hé =0, 1€ =0, tr(h) =0, tr(h¢) =0, h¢ + ¢h = 0,
(2.3) Vxé=—¢’X — ¢phX(= Ve =0),
(2.4) ol — 1 =2(h* — ¢),

R(X,Y)E =n(X)(Y = ¢hY) = n(Y)(X — ¢ohX) + (Vyoh) X
(2.5) —(Vxoh)Y,

for any vector fields X,Y. The (1,1)-type symmetric tensor field A’ = ho ¢ is
anti-commuting with ¢ and h'¢ = 0. Also it is clear that [3, 10, 21]

(2.6) h=0&h =0, h?=(k+1)¢*(< h* = (k+1)8%).
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3. ¢ belongs to the Generalized (k, 1)’ -nullity Distribution

This section is devoted to study almost Kenmotsu manifolds with £ belonging
to the generalized (k,p)’-nullity distribution. Let M?"T1(¢,£&,n,g) be an almost
Kenmotsu manifold with £ belonging to the generalized (k, u)-nullity distribution,
then according to Pastore and Saltarelli [14] we have

(3.1)  RX,Y)§=kn(Y)X —n(X)Y]+ pn(Y)h'X —n(X)W'Y],

where k, p are smooth functions on M?"*! and b’ = ho ¢. Let X € D be the
eigenvector of h’' corresponding to the eigenvalue A. Then from (2.6) it is clear
that A2 = —(k + 1). Therefore k < —1 and A\ = +v/—k — 1. We denote by [))’
and [—\]’ the corresponding eigenspaces related to the non-zero eigen value A and
—X of b/, respectively. In [14] Pastore and Saltarelli cited some examples of almost
Kenmotsu manifold with £ belonging to the generalized (k, p)-nullity distribution.
Before presenting our main theorems we recall some results:

Lemma 3.1.(Theorem 5.1 of [14]) Let (M*"*1 ¢.& 1, g) be a generalized (k,p)’-
almost Kenmotsu manifold such that h' #£0 and n > 1. Then for any Xx,Yx, Zy €
[\ and X_»,Y_»x,Z_x € [=A]', the Riemannian curvature tensor satisfies

R(X)\,Y/\>Z = 0,
R(X_»,Y_\)Zy = 0,
R(XA; NZx = (k+2)g(Xx, Z))Y-»,
R(X\,Y_\)Z_x = —(k+2)g(Y_x,Z-2)Xn,
R(X)\,YA)Z,\ = (k:—Q)\)[g(Y,\,Z)\)X,\—g(X)\,Z)\)Y)\],
R(X_5\,Y_\)Z-x = (k+2N)[g(Yox, Z-2)Xx — g(X-x, Z-2)Y-5].

If n > 1, then the Ricci operator Q of M?"*! defined by ¢g(QX,Y) = S(X,Y)
is given by [20]

(3.2) Q=—2nid+2nk+1)n® &+ [p—2(n—1)H.

Moreover, the scalar curvature of M2 is 2n(k — 2n).
Also for an almost Kenmotsu manifold with generalized (k, )’ -nullity distribu-
tion [14]

(Vxh)Y = —gWX+h?XY)—nY)(hX +1h?X)
(3.3) —(p+2)n(X)n'Y,

for all smooth vectors fields X, Y.
From (3.1) it follows that

(3.4)  R(§X)Y =k[g(X,Y)E = n(Y)X] + plg(h' X, Y)§ — n(Y)h' X].
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Contracting X in (3.1) we have
(3.5) S(Y,€) = 2nkn(Y).

4. Almost Kenmotsu Manifolds with ¢ belonging to the Generalized
(k, 1)'-nullity Distribution satisfying Codazzi Type of Ricci Tensor

In this section we characterize an almost Kenmotsu manifold with £ belonging
to the generalized (k, 1)’ -nullity distribution whose Ricci tensor is of Codazzi type.
Taking covariant differentiation of (3.2) we obtain

(Vy@)X = 2n(k+1)[(Vyn)X +n(X)Vy{]
(4.1) + [ =2(n = D](Vyh)X

Using (2.1), (2.3) and (3.3) in (4.1) yields
(VyQ)X = 2n(k+ 1)[g(X,Y)¢ = 2n(X)n(Y)E + g(Y, M X)§ + n(X)Y + n(X)n'Y]

— [ —2(n = 1)][g(R'Y, X)¢ + g(K?Y, X)& + n(X)'Y + n(X)h"*Y +
(4.2) (1 + 2)n(Y)h' X).

Suppose the Ricci tensor of the manifold M2 +! is of Codazzi type. Then

(4.3) (VyQ)X = (VxQ)Y,

for all smooth vector fields X,Y.
Making use of (4.2) in (4.3) implies

2n(k + 1D[g(X,Y)E = 2n(X)n(Y)E + g(Y, W' X)§ + n(X)Y
+n(X)R'Y] = [ —2(n — D)][g(h'Y, X)& + g(h"?Y, X)& + n(X)h'Y +
(XY + (u+2)n(Y)h' X] = 2n(k + 1)[g(X, V)€ — 2n(X)n(Y)E +
g(Y, W X)E+n(Y)X + (Y)W X] = [ — 2(n — 1)][g('Y, X)¢ +

(44)  g(W*X,Y)E+n(Y)W'X +n(Y)R2X + (4 2)n(X)h'Y].

Using the fact h'? = (k + 1)¢? in (4.4) we have

2n(k + D[(n(X)Y = n(Y)X) + (n(X)'Y = n(Y)h'X)]
~[1n=2(n = DI[(X)PY = n(Y)A'X) = (n(X)Y = n(¥Y) X))
(4.5) i+ 2) (Y)W X = n(X)WY)] = 0.

Putting Y = £ in the foregoing equation yields

2n(k + 1)[(n(X)E = X) = W' X)] = [ — 2(n — D][-h'X
(4.6) —((X)€ = X) + (u+ 2)W'X] = 0.
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Let X € [A]’. Then from (4.6) we get
(4.7) 2n(k + 1) A+ 1) + [ —2(n — D][-X = A2+ (p+2)\] = 0.
Again assume that X € [—A]’. Then from (4.6) we obtain
(4.8) 2n(k+ 1)(=A+1) + [ —2(n — D]\ =A% — (u+2)\] = 0.
Adding (4.7) and (4.8) we get

(k+1)(u+2) = 0,

that is, either k = —1 or p = —2. If k = —1, then A’ = 0, which is a contradiction.
Therefore, = —2. Putting = —2 in (4.7) yields

(4.9) A+D(k+14+A)=0.
Using the fact A2 = —(k + 1) in (4.9), we have
(4.10) AN —1) =0,

that is, either A = 0 or A2 = 1. If A = 0, then A’ = 0, which is a contradiction.
Therefore, A2 = 1. Making use of A2 = 1 in \> = —(k + 1) implies ¥ = —2. Then
we have from Lemma 3.1,

R(Xx,Y)\)Zx = —4[g(Yx, Zx) Xx — 9(Xx, Z))Y)\]
and
R(X_\,Y_\)Z_»=0,

for any vector field X»,Yy,Zx € [A]' and X_,Y_»,Z_» € [—A]’. Also noticing
uw = —2, it follows from Lemma 3.1 that K(X,§) = —4 for any X € [A]' and
K(X,¢) =0 for any X € [-A]. Again from Lemma 3.1, we see that K(X,Y) = —4
for any X,Y € [A]; K(X,Y) = 0 for any X,Y € [-)\) and K(X,Y) = 0 for
any X € [\, Y € [-)]. Also the distribution [¢] & [)\]’ is integrable with totally
geodesic leaves and the distribution [— )]’ is integrable with totally umbilical leaves
by H = —(1—\)¢, where H is the mean curvature vector field for the leaves of [—A]’
immersed in M?"*1. Here A = 1, then two orthogonal distributions [¢] & [\]’ and
[~)]’ are both integrable with totally geodesic leaves immersed in M2"*!. Then we
can say that M?"+! is locally isometric to H"*!(—4) x R™.

Conversely, let M?" T is locally isometric to H"T!(—4) x R™. Then by Theorem
4.4 of [20] it follows that M?"T! is locally symmetric. Then the manifold satisfies
the condition of Codazzi type of Ricci tensor, that is, (Vy Q)X = (VxQ)Y, for all
smooth vector fields X, Y.

Thus we have the following:
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Proposition 4.1. Let M*"*1(¢,£,n,9) be an almost Kenmotsu manifolds with
generalized (k, p)'-nullity distribution such that b’ # 0 and n > 1. Then the Ricci
tensor of the manifold is of Codazzi type if and only if the manifold is locally iso-
metric to H"1(—4) x R™.

5. Almost Kenmotsu Manifolds with Generalized (k, 1)’-nullity Distribu-
tion satisfying div C' =0

Let M?"*+! be an almost Kenmotsu manifold whose Weyl conformal curvature
tensor is divergence free, that is, div C' = 0. Then we have

(51) (VxS)Y,2) ~ (VyS)(X, 2) = 1 [X(1g(¥, Z) ~ Y (r)g(X, 7).
Using (3.2) in (5.1) yields

2n(k + 1)[n(Y)g(X, Z) = n(X)g(Y, Z) + n(Y)g(h'X, Z) — n(X)g(K'Y, Z)]
—[p=2(n = DIY)g(h' X, Z) = n(X)g('Y, Z) +n(Y)g(h*X, Z)

(5.2) =n(X)g(h™Y, Z) — (u+2)n(Y)g(W' X, Z)] = ﬁ[X(T)g(Y’ Z) =Y (r)g(X, Z)].
Using (3.5) and the fact h? = (k + 1)¢? in (5.2) implies

2n(k + V)[n(Y)g(X, Z) — n(X)g(Y, Z) + n(Y)g(W' X, Z) — n(X)g(R'Y, Z)]
—[p=2(n—=1)|n(Y)g(h' X, Z) = n(X)g(W'Y, Z) —n(Y)9(X, Z) + n(X)g(Y, Z)

(5.3)=(n+2)n(YV)g(W' X, Z)] = %[X(k)g(Y, Z) =Y (k)g(X, Z)].

)
)

Replacing Y by ¢ in (5.3) we have

2n(k +1)[9(X, Z) —n(X)n(Z) + g(h'X, Z)] — [p — 2(n = 1)][9(M' X, Z)
(5.4) —9(X,Z) +n(X)n(Z) — (n+2)9(h'X, Z)] = %[X(k)n(Z) —§(k)g(X, Z)].
Let X, Z € D[)]'. Then from (5.4) we obtain
(5.5) 2n(k + 1)1+ A — [ —2(n — DA+ A2 = Xz +2)] =0.
Again we assume X, Z € [-A]. Then (5.4) implies
(5.6) o2n(k + 1)1 — Al — [ — 2(n — D][-A+ A2+ A+ 2)] = 0.
Adding (5.5) and (5.6) we have

(k+1)(p+2)=0,

that is, either k = —1 or u = —2. If k = —1, then A’ = 0, which is a contradiction.
Therefore, u = —2. Making use of u = —2 in (5.5) yields

(5.7) A+1)(E+14X) =0.
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Using the fact A2 = —(k + 1) in (5.7), we have
(5.8) AN —1) =0,

that is, either A = 0 or A2 = 1. If A\ = 0, then A’ = 0, which is a contradiction.
Therefore, A2 = 1. Making use of A2 =1 in A\ = —(k + 1), implies k = —2. Then
we have from Lemma 3.1,

R(X),Y\)Z\ = —4[g(Yx, Zx) X — 9(Xx, Z\)Y)\]
and
R(X_\,Y_\)Z_x =0,

for any vector field X,,Y),Z\ € [A]' and X_,,Y_,,Z_, € [-A]". Also noticing
u = —2, it follows from Lemma 3.1 that K(X,§) = —4 for any X € [A]' and
K(X,&) =0for any X € [-)]. Again from Lemma 3.1, we see that K(X,Y) = —4
for any X,Y € [A); K(X,Y) = 0 for any X,Y € [-)]) and K(X,Y) = 0 for
any X € [\, Y € [-A]'. Also the distribution [{] & [A]’ is integrable with totally
geodesic leaves and the distribution [—A]’ is integrable with totally umbilical leaves
by H = —(1—=M\)¢, where H is the mean curvature vector field for the leaves of [—A]’
immersed in M?"*!. Here A = 1, then two orthogonal distributions [¢] & [\]’ and
[—\]" are both integrable with totally geodesic leaves immersed in M?"*+1. Then we
can say that M?"*! is locally isometric to H"*1(—4) x R™.
This leads to the following:

Proposition 5.1.  Let M*"*1(¢, & 1, g) be an almost Kenmotsu manifold with
generalized (k, p)'-nullity distribution such that b’ # 0 and n > 1. If the manifold is
of harmonic Weyl conformal curvature tensor, that is, div C' = 0, then the manifold
is locally isometric to H"T1(—4) x R™.

Since div R = 0 implies div C' = 0, thus we have the following:

Corollary 5.1. Let M*"*1(¢,&,m,9) be an almost Kenmotsu manifold with gen-
eralized (k,p) -nullity distribution such that h' # 0 and n > 1. If the manifold
satisfies div R = 0, then the manifold is locally isometric to H"t1(—4) x R™.

Again, since VC = 0 (conformally symmetric) implies div C' = 0, so we obtain
the following:

Corollary 5.2. Conformally symmetric almost Kenmotsu manifolds with general-
ized (k,p) -nullity distribution such that b’ # 0 and n > 1 is locally isometric to
H"H(—4) x R™.

Remark 5.1. The above Corollary have been proved by De et al. [4].

Suppose the Ricci tensor of the manifold is of Codazzi type. Then the scalar
curvature r is constant. Now if 7 is constant then from (5.1) it clear that div C' = 0.
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From Proposition 4.1, Proposition 5.1 and the above discussions we can state
the following:

Theorem 5.1. Let M?" 1 (¢, £,m,g) be an almost Kenmotsu manifold with gener-
alized (k,p) -nullity distribution such that ' # 0 and n > 1. Then the following
statements are equivalent:

(i) The Ricci tensor of M?"+1 is of Coddazi type,
(i) The manifold M*"+1 satisfies div C = 0,
(iii) The manifold M?"+1 is locally isometric to H"T1(—4) x R™.
6. Almost Kenmotsu Manifolds with Generalized (k, 1)’ -nullity Distribu-
tion satisfying Cyclic Parallel Ricci Tensor

In this section we study almost Kenmotsu manifolds with generalized (k, u)’-
nullity distribution satisfying cyclic parallel Ricci tensor. Suppose the manifold
M7+ gatisfies cyclic parallel Ricci tensor. Then

(6.1) (VxS)(Y.Z) + (VyS)(X, Z) + (V2S)(X.Y) =0,

Taking inner product with Z in (4.2) yields

(VyS)(X,Z) = 2n(k+1D)[g(X,Y)n(Z) = 20(X)n(Y)n(Z) + g(Y, W' X)n(Z)
+9(Y, Z)n(X)] = [ — 2(n — D][g(K'Y, X)n(Z) + g(hY, X)n(Z)
(6.2) +9(h'Y, Z)n(X) + g(h?Y, Z)n(X) + (u+ 2)g(W' X, Z)n(Y)).

Using (6.2) in (6.1) yields

2n(k + D]g(X,Y)n(Z) = 2n(X)n(Y)n(2) + (Y, ' X)n(2)
+9(X, Z)n(Y)] = [ — 2(n = D]lg(W'Y, X)n(Z) + g(h*Y, X)n(Z)
) ( ]

+9(W' X, Z)n(Y) + g(W*X, Zn(Y) + (n + 2)g(R'Y, Z)n(X)
+2n(k + D[g(X,Y)n(Z) = 2n(X)n(Y)n(Z) + g(Y, k' X)n(Z)
+9(Y, Z)n(X)] = [p—2(n = 1)][g (Z) + g(W*Y, X)n(2Z)

( (W'Y, X)n
+g(W'Y, Z)n(X) + g(h?Y, Z)n(X) + (u +2)g(' X, Z)n(Y)]
+2n(k 4+ 1)[g(X, Z)n(Y) = 2n(X)n(Y)n(Z) + g(Z, K X)n(Y)
+9(Y, Z)n(X)] = [ —2(n — D][g(h' Z, X)n(Y) + g(h*Z, X)n(Y')
+9(R'Y, Z)n(X) + g(W?Y, Z)n(X)
(6.3) +(p+2)g(h' X, Y)n(Z)] = 0.

Replacing Z by ¢ in (6.3) we obtain

2n(k +1)[g(X,Y) = n(X)n(Y) + g(h'X,Y)] — [u — 2(n — 1)][g(h'Y, X)
(6.4)  +g(h*Y,X)]=0
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Let X,Y € [A]. Then from (6.4) we have
(6.5) 2n(k + 1)(1+ ) — [ —2(n — D)](A+ A?) = 0.
Now we assume that X, Y € [-A]’. Then from (6.4) it follows that
(6.6) 2n(k +1)(1—X\) — [u—2(n—D](=A+ 1) =0.
Using (6.5) and (6.6) implies

(k+1)(n+2)=0,

that is, either k = —1 or p = —2. If k = —1, then A’ = 0, which is a contradiction.
Therefore, u = —2. Making use of u = —2 in (6.5) yields

(6.7) A+D(k+14+X)=0.
Using the fact A2 = —(k + 1) in (6.7), we have
(6.8) A(A2—1) =0,

that is, either A = 0 or A2 = 1. If A = 0, then A’ = 0, which is a contradiction.
Therefore, A2 = 1. Making use of A> = 1 in \> = —(k + 1), implies K = —2. Then
we have from Lemma 3.1,

R(X)\,YN)Zy = —4[g(Yx, Z))Xx — g(Xx, Z))Y)\]
and
R(X_»,Y_\)Z_» =0,

for any vector field X»,Yy,Zx € [A]' and X_,Y_»,Z_» € [—A]’. Also noticing
uw = —2, it follows from Lemma 3.1 that K(X,§) = —4 for any X € [A]' and
K(X,£) =0for any X € [-A]. Again from Lemma 3.1, we see that K(X,Y) = —4
for any X,Y € [A]; K(X,Y) = 0 for any X,Y € [-)\) and K(X,Y) = 0 for
any X € [\, Y € [-A]'. Also the distribution [£] @ [A]’ is integrable with totally
geodesic leaves and the distribution [— )]’ is integrable with totally umbilical leaves
by H = —(1—\)¢, where H is the mean curvature vector field for the leaves of [—A]
immersed in M?"*1. Here A = 1, then two orthogonal distributions [¢] & [\]’ and
[—)]’ are both integrable with totally geodesic leaves immersed in M2"*!. Then we
can say that M?"+1 is locally isometric to H"1(—4) x R™.
Thus we can state:

Theorem 6.1 Let M*"t1(¢,&,n,9) be an almost Kenmotsu manifolds with gen-
eralized (k,p)'-nullity distribution such that h' # 0 and n > 1. If the manifold
satisfies the cyclic parallel Ricci tensor, then the manifold is locally isometric to
H" 1 (—4) x R™.
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