• Title/Summary/Keyword: (${\sigma}$, ${\tau}$)-derivation

Search Result 19, Processing Time 0.023 seconds

ON GENERALIZED LIE IDEALS IN SEMI-PRIME RINGS WITH DERIVATION

  • Ozturk, M. Ali;Ceven, Yilmaz
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The object of this paper is to study($\sigma,\;\tau$)-Lie ideals in semi-prime rings with derivation. Main result is the following theorem: Let R be a semi-prime ring with 2-torsion free, $\sigma$ and $\tau$ two automorphisms of R such that $\sigma\tau=\tau\sigma$=, U be both a non-zero ($\sigma,\;\tau$)-Lie ideal and subring of R. If $d^2(U)=0$, then d(U)=0 where d a non-zero derivation of R such that $d\sigma={\sigma}d,\;d\tau={\tau}d$.

  • PDF

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE $(\sigma,\tau)$-DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.195-203
    • /
    • 2002
  • Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contains no nonzero nilpotent right ideal as a ring. For a $(\sigma,\tau)$-derivation d : R$\rightarrow$R, we prove the following results: (1) If d is an endomorphism on R then d=0. (2) If d is an anti-endomorphism on R then d=0. (3) If d(xy)=d(yx), for all x, y$\in$R then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then d=0.

  • PDF

NOTES ON (σ, τ)-DERIVATIONS OF LIE IDEALS IN PRIME RINGS

  • Golbasi, Oznur;Oguz, Seda
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.441-448
    • /
    • 2012
  • Let R be a prime ring with center Z and characteristic different from two, U a nonzero Lie ideal of R such that $u^2{\in}U$ for all $u{\in}U$ and $d$ be a nonzero (${\sigma}$, ${\tau}$)-derivation of R. We prove the following results: (i) If $[d(u),u]_{{\sigma},{\tau}}$ = 0 or $[d(u),u]_{{\sigma},{\tau}}{\in}C_{{\sigma},{\tau}}$ for all $u{\in}U$, then $U{\subseteq}Z$. (ii) If $a{\in}R$ and $[d(u),a]_{{\sigma},{\tau}}$ = 0 for all $u{\in}U$, then $U{\subseteq}Z$ or $a{\in}Z$. (iii) If $d([u,v])={\pm}[u,v]_{{\sigma},{\tau}}$ for all $u{\in}U$, then $U{\subseteq}Z$.