• Title/Summary/Keyword: (${\epsilon},\

Search Result 769, Processing Time 0.027 seconds

A Case Study on Students' Concept Images of the Uniform Convergence of Sequences of Continuous Functions

  • Jeong, Moonja;Kim, Seong-A
    • Research in Mathematical Education
    • /
    • v.17 no.2
    • /
    • pp.133-152
    • /
    • 2013
  • In this research, we investigated students' understanding of the definitions of sequence of continuous functions and its uniform convergence. We selected three female and three male students out of the senior class of a university and conducted questionnaire surveys 4 times. We examined students' concept images of sequence of continuous functions and its uniform convergence and also how they approach to the right concept definitions for those through several progressive questions. Furthermore, we presented some suggestions for effective teaching-learning for the sequences of continuous functions.

LINEAR CONNECTIONS IN THE BUNDLE OF LINEAR FRAMES

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.731-738
    • /
    • 2012
  • Let L(M) be the bundle of all linear frames over $M,\;u$ an arbitrarily given point of L(M), and ${\nabla}\;:\;\mathfrak{X}(M)\;{\times}\;\mathfrak{X}(M)\;\rightarrow\;\mathfrak{X}(M)$ a linear connection on L(M). Then the following results are well known: the horizontal subspace and the connection form at the point $u$ may be written in terms of local coordinates of $u\;{\epsilon}\;L(M)$ and Christoffel's symbols defined by $\nabla$. These results are very fundamental on the study of the theory of connections. In this paper we show that the local expressions of those at the point $u$ do not depend on the choice of a local coordinate system around the point $u\;{\epsilon}\;L(M)$, which is rarely seen. Moreover we give full explanations for the following fact: the covariant derivative on M which is defined by the parallelism on L(M), determined from the connection form above, coincides with $\nabla$.

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

Numerical Modeling of Two-Phase Non-Isothermal Turbulent Jet (비등온 난류 제트의 이상유동에 대한 수치모델)

  • Lien, Hoang Duc;Kim, Myong-Kwan;Kwon, Oh-Boong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.783-788
    • /
    • 2001
  • Choosing the most suitable mathematical model and relating this to turbulent tangential tensions model are very important in the investigations of turbulent two-phase flow. This paper considers two-fluid scheme. According to it, two phases have their own densities, velocities, and temperatures at any spatial point and at any moment. The equations of motion and heat transfer for each phase are linked with the forces of interaction between two phases. These forces are considered as predominant for the flow. As a closure in the system of motion equations, one modification of $K - {\epsilon}$ turbulent model is worked out. The modification uses two equations for turbulent kinetic energy of the phases and one - for the turbulent energy loss of main phase. This model can be set as a $K_g - K_p -{\epsilon}$ model. The modified model has been tested for both a two-phase non-isothermal flat jet and axially symmetrical jet. The numerical results are compared with the reference data revealing a good agreement between them.

  • PDF

A Study on the Effects of Turbulence Model and Numerical Scheme on Analysis of the Flow through Airfoil Type Tubular Fan (관류 익형송풍기의 유동해석에 대한 난류모델 및 수치도식의 영향에 관한 연구)

  • Moon, Jung-joo;Seo, Seoung-jin;Kim, Kwang-yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.23-29
    • /
    • 2003
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades is analyzed, and the effects of turbulence model and numerical scheme on the results are investigated. Standard $k-{\epsilon}$ model and k - w model are tested as turbulence closures. The numerical schemes for convection terms, i.e., Upwind Differencing Scheme (UDS), Mass Weighted Skewed upstream differencing scheme (MWS), Linear Profile Skewed upstream differencing scheme (LPS), and Modified Linear Profile Skewed upstream differencing scheme (MLPS) are also tested, and the performances of these schemes coupled with two turbulence models are evaluated. The static pressure distributions are compared with experimental data obtained in this work, which shows that the $k-{\epsilon}$ model gives better results than the k-w model.

Design Method for the Electromagnetic Wave Absorber at 9.45 GHz (9.45GHz용 전파흡수체의 설계 방법)

  • 김왕섭;김경용
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.2
    • /
    • pp.11-16
    • /
    • 1993
  • A design method for the electromagnetic wave absorber with the attenuation over 20 dB at a frequency was formulated. In addition to the matching boundary which is determined by the theoretical equation, several limiting conditions due to the fabrication process were examined. Based on the study on the effects of the variance of the thickness and permittivity on the electromagnetic wave absorbing characteristics, a mean to exclude such effects was also included in the proposed design method. The ranges of variables were limited as the frequency of 9.45 GHz and .epsilon.' = 5 ~ 30, when the effect of .epsilon. " was not considered.

  • PDF

Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir (온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.

On Asymptotic Properties of Bootstrap for Autoregressive Processes with Regularly Varying Tail Probabilities

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.

  • PDF

Improvement of rotor flux estimation performance of induction motor using Support Vector Machine $\epsilon$-insensitive Regression Method (Support Vector Machine $\epsilon$-insensitive Regression방법을 이용한 유도전동기의 회전자 자속추정 성능개선)

  • Han, Dong-Chang;Baek, Un-Jae;Kim, Seong-Rak;Park, Ju-Hyeon;Lee, Seok-Gyu;Park, Jeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.43-46
    • /
    • 2003
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector machine(SVM) is presented. Two veil-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. The theory of the SVM algorithm is based on statistical teaming theory. Training of SVH leads to a quadratic programming(QP) problem. The proposed SVM rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of Proposed algorithm are throughly verified through numerical simulation.

  • PDF