• Title/Summary/Keyword: 'Speech recognition

Search Result 2,065, Processing Time 0.024 seconds

A Real-Time Implementation of Speech Recognition System Using Oak DSP core in the Car Noise Environment (자동차 환경에서 Oak DSP 코어 기반 음성 인식 시스템 실시간 구현)

  • Woo, K.H.;Yang, T.Y.;Lee, C.;Youn, D.H.;Cha, I.H.
    • Speech Sciences
    • /
    • v.6
    • /
    • pp.219-233
    • /
    • 1999
  • This paper presents a real-time implementation of a speaker independent speech recognition system based on a discrete hidden markov model(DHMM). This system is developed for a car navigation system to design on-chip VLSI system of speech recognition which is used by fixed point Oak DSP core of DSP GROUP LTD. We analyze recognition procedure with C language to implement fixed point real-time algorithms. Based on the analyses, we improve the algorithms which are possible to operate in real-time, and can verify the recognition result at the same time as speech ends, by processing all recognition routines within a frame. A car noise is the colored noise concentrated heavily on the low frequency segment under 400 Hz. For the noise robust processing, the high pass filtering and the liftering on the distance measure of feature vectors are applied to the recognition system. Recognition experiments on the twelve isolated command words were performed. The recognition rates of the baseline recognizer were 98.68% in a stopping situation and 80.7% in a running situation. Using the noise processing methods, the recognition rates were enhanced to 89.04% in a running situation.

  • PDF

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

Subword-based Lip Reading Using State-tied HMM (상태공유 HMM을 이용한 서브워드 단위 기반 립리딩)

  • Kim, Jin-Young;Shin, Do-Sung
    • Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.123-132
    • /
    • 2001
  • In recent years research on HCI technology has been very active and speech recognition is being used as its typical method. Its recognition, however, is deteriorated with the increase of surrounding noise. To solve this problem, studies concerning the multimodal HCI are being briskly made. This paper describes automated lipreading for bimodal speech recognition on the basis of image- and speech information. It employs audio-visual DB containing 1,074 words from 70 voice and tri-viseme as a recognition unit, and state tied HMM as a recognition model. Performance of automated recognition of 22 to 1,000 words are evaluated to achieve word recognition of 60.5% in terms of 22word recognizer.

  • PDF

Design of Linguistic Contents of Speech Copora for Speech Recognition and Synthesis for Common Use (공동 이용을 위한 음성 인식 및 합성용 음성코퍼스의 발성 목록 설계)

  • Kim Yoen-Whoa;Kim Hyoung-Ju;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.43
    • /
    • pp.89-99
    • /
    • 2002
  • Recently, researches into ways of improving large vocabulary continuous speech recognition and speech synthesis are being carried out intensively as the field of speech information technology is progressing rapidly. In the field of speech recognition, developments of stochastic methods such as HMM require large amount of speech data for training, and also in the field of speech synthesis, recent practices show that synthesis of better quality can be produced by selecting and connecting only the variable size of speech data from the large amount of speech data. In this paper we design and discuss linguistic contents for speech copora for speech recognition and synthesis to be shared in common.

  • PDF

A Study on Speech Recognition Technology Using Artificial Intelligence Technology (인공 지능 기술을 이용한 음성 인식 기술에 대한 고찰)

  • Young Jo Lee;Ki Seung Lee;Sung Jin Kang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.140-147
    • /
    • 2024
  • This paper explores the recent advancements in speech recognition technology, focusing on the integration of artificial intelligence to improve recognition accuracy in challenging environments, such as noisy or low-quality audio conditions. Traditional speech recognition methods often suffer from performance degradation in noisy settings. However, the application of deep neural networks (DNN) has led to significant improvements, enabling more robust and reliable recognition in various industries, including banking, automotive, healthcare, and manufacturing. A key area of advancement is the use of Silent Speech Interfaces (SSI), which allow communication through non-speech signals, such as visual cues or other auxiliary signals like ultrasound and electromyography, making them particularly useful for individuals with speech impairments. The paper further discusses the development of multi-modal speech recognition, combining both audio and visual inputs, which enhances recognition accuracy in noisy environments. Recent research into lip-reading technology and the use of deep learning architectures, such as CNN and RNN, has significantly improved speech recognition by extracting meaningful features from video signals, even in difficult lighting conditions. Additionally, the paper covers the use of self-supervised learning techniques, like AV-HuBERT, which leverage large-scale, unlabeled audiovisual datasets to improve performance. The future of speech recognition technology is likely to see further integration of AI-driven methods, making it more applicable across diverse industries and for individuals with communication challenges. The conclusion emphasizes the need for further research, especially in languages with complex morphological structures, such as Korean

  • PDF

Performance of Vocabulary-Independent Speech Recognizers with Speaker Adaptation

  • Kwon, Oh Wook;Un, Chong Kwan;Kim, Hoi Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.57-63
    • /
    • 1997
  • In this paper, we investigated performance of a vocabulary-independent speech recognizer with speaker adaptation. The vocabulary-independent speech recognizer does not require task-oriented speech databases to estimate HMM parameters, but adapts the parameters recursively by using input speech and recognition results. The recognizer has the advantage that it relieves efforts to record the speech databases and can be easily adapted to a new task and a new speaker with different recognition vocabulary without losing recognition accuracies. Experimental results showed that the vocabulary-independent speech recognizer with supervised offline speaker adaptation reduced 40% of recognition errors when 80 words from the same vocabulary as test data were used as adaptation data. The recognizer with unsupervised online speaker adaptation reduced abut 43% of recognition errors. This performance is comparable to that of a speaker-independent speech recognizer trained by a task-oriented speech database.

  • PDF

Consideration on the Fuzzy Chaos Dimension for Speech Recognition (음성인식을 위한 퍼지 카오스 차원의 고찰)

  • Yoo, B.W.;Kim, S.K.;Park, H.S.;Kim, C.S.
    • Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.25-39
    • /
    • 1998
  • This paper deals with fuzzy correlation dimension for an appropriate speech recognition. The proposed fuzzy correlation dimension has absorbed time variation value of strange attractor as utilizing fuzzy membership function at calculation of integral correlation when the results of proposed dimension are applied to speech recognition fuzzed correlation dimension is superior to speech recognition, and correlation dimension is superior to speaker discrimination.

  • PDF

Implementation of speech interface for windows 95 (Windows95 환경에서의 음성 인터페이스 구현)

  • 한영원;배건성
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.86-93
    • /
    • 1997
  • With recent development of speech recognition technology and multimedia computer systems, more potential applications of voice will become a reality. In this paper, we implement speech interface on the windows95 environment for practical use fo multimedia computers with voice. Speech interface is made up of three modules, that is, speech input and detection module, speech recognition module, and application module. The speech input and etection module handles th elow-level audio service of win32 API to input speech data on real time. The recognition module processes the incoming speech data, and then recognizes the spoken command. DTW pattern matching method is used for speech recognition. The application module executes the voice command properly on PC. Each module of the speech interface is designed and examined on windows95 environments. Implemented speech interface and experimental results are explained and discussed.

  • PDF

Integrated Visual and Speech Parameters in Korean Numeral Speech Recognition

  • Lee, Sang-won;Park, In-Jung;Lee, Chun-Woo;Kim, Hyung-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.685-688
    • /
    • 2000
  • In this paper, we used image information for the enhancement of Korean numeral speech recognition. First, a noisy environment was made by Gaussian generator at each 10 dB level and the generated signal was added to original Korean numeral speech. And then, the speech was analyzed to recognize Korean numeral speech. Speech through microphone was pre-emphasized with 0.95, Hamming window, autocorrelation and LPC analysis was used. Second, the image obtained by camera, was converted to gray level, autocorrelated, and analyzed using LPC algorithm, to which was applied in speech analysis, Finally, the Korean numerial speech recognition with image information was more ehnanced than speech-only, especially in ‘3’, ‘5’and ‘9’. As the same LPC algorithm and simple image management was used, additional computation a1gorithm like a filtering was not used, a total speech recognition algorithm was made simple.

  • PDF

Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition (이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출)

  • Shin, Min-Hwa;Park, Ji-Hun;Kim, Hong-Kook;Lee, Yeon-Woo;Lee, Seong-Ro
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.141-148
    • /
    • 2010
  • In this paper, voice activity detection (VAD) for dual-channel noisy speech recognition is proposed in which spatial cues are employed. In the proposed method, a probability model for speech presence/absence is constructed using spatial cues obtained from dual-channel input signal, and a speech activity interval is detected through this probability model. In particular, spatial cues are composed of interaural time differences and interaural level differences of dual-channel speech signals, and the probability model for speech presence/absence is based on a Gaussian kernel density. In order to evaluate the performance of the proposed VAD method, speech recognition is performed for speech segments that only include speech intervals detected by the proposed VAD method. The performance of the proposed method is compared with those of several methods such as an SNR-based method, a direction of arrival (DOA) based method, and a phase vector based method. It is shown from the speech recognition experiments that the proposed method outperforms conventional methods by providing relative word error rates reductions of 11.68%, 41.92%, and 10.15% compared with SNR-based, DOA-based, and phase vector based method, respectively.

  • PDF