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Abstract

In this paper, we investigated performance of a vocabulary-independent speech recognizer with speaker adaptation. The 

vocabulary-independent speech recognizer does not require task-oriented speech databases to estimate HMM parameters, 

but adapts the parameters recursively by using input speech and recognition results. The recognizer has the advantage that 

it relieves efforts to record the speech databases and can be easily adapted to a new task and a new speaker with different 

recognition vocabulary without losing recognition accuracies. Experimental results showed that the vocabulary-independent 

speech recognizer with supervised offline speaker adaptation reduced 40% of recognition errors when 80 words from the 

same vocabulary as test data were used as adaptation data. The recognizer with unsupervised online speaker adaptation 

reduced about 43% of recognition errors. This performance is comparable to that of a speaker-independent speech 

recognizer trained by a task-oriented speech database.

I. Introduction

Recently, speaker-independent speech recognizers have 

shown remarkable recognition accuracies by virtue of 

sophisticated acoustic modeling and large speech databases. 

However, their performances are yet inferior to speaker­

dependent speech recognizers. To recognize speech utterances 

in dynamically-varying dialogue contexts or situations, a 

vocabulary-independent (variable-vocabulary) speech reco­

gnizer [1 ] is desirable. In that case, a speech recognizer 

trained by a task-oriented speech database shows poor 

performance because new vocabulary different from training 

vocabulary has to be recognized. On the contrary, in the 

vocabulary-independent speech recognizer, we can use 

different recognition vocabulary according to dialogue 

contexts.

The vocabulary-independent speech recognizer has the 

advantage that it requires no task-oriented training 

speech databases and relieves efforts to record to speech 

databases, so that it can be easily adapted to a new task 

and a new speaker with different recognition vocabulary 

without losing recognition accuracies. The recognizer can 

be used where recognition vocabulary can not be predefined 

and has to be changed dynamically with varying dialogue 

contexts as in speech-driven web browsers. The recognizer 

can be also used in a dictator application, where the 

recognizer are initially trained by phonetically-balanced 

speech data and then are adapted to a new speaker. In 

this paper, we aim to improve the performance of the 

vocabulary-independent speech recognizer using speaker 

adaptation techniques to the level comparable to the 

task-oriented speech recognizer.

Three approaches have been studied to adapt continuous 

density hidden Markov model (HMM)-based speech reco­

gnizers to a new speaker: A maximum a posteriori (MAP) 

estimation approach, a transform approach, and a smoo­

thing approach.

In the MAP estimation approach [2|, (31, [4], [5], a par­

ameter is estimated by maximizing the posterior prob­

ability of the parameter given observed samples. When 

the prior density fbr a parameter is Gaussian, the resultant 

estimation formula is usually represented by a weighted 

sum of the prior parameter and the sample parameter 

computed by maximum likelihood estimation [6]. And the 

weight is determined according to the number of observed 

samples and the variance of the prior density of the par­

ameter. When adaptation data (observed samples) are 

sufficient for all HMM parameters, the speech recognizer 

adapted by the MAP estimation approach converges to a 

speaker-dependent speech recognizer, which can be regarded 

as optimal. However, it is desirable to use as short adap­

tation words as possible to relieve a user's efforts to pro­

nounce adaptation utterances. Hence, adaptation speech 
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data are usually insufficient and consequently some para­

meters are short of observed samples for reliable estimation. 

To solve this pro비em, an extended MAP algorithm |이 

was proposed, where correlations among parameters were 

exploited to estimate parameters「elia미y with small adap­

tation data.

Hyperparmeters [4] of the prior density used in MAP 

estimation are often assumed known. But, in reality, they 

should be estimated also from training data. Therefore, 

the MAP estimation approach causes a new problem of 

estimating hyperparameters of the prior density. In this 

sense, the extended MAP algorithm has the disadvantage 

that it requires a large number of hyperparameters to be 

estimated and it also increases computational complexity. 

In practice, heuristic or approximate methods are often 

used to estimate the hyperparameters.

In the transform approach, a global transform for each 

class that maximizes the probability of the observed 

samples is estimated [7], |8]. Compared with the MAP 

estimation approach, this approach shows good perform­

ance with small adaptation data, but shows poor per­

formance with sufficient observed samples. The perform­

ance of the recognizer is severely affected by the number 

of classes to be determined empirically. The performance 

does not converge to that of a speaker-dependent speech 

recognizer with sufficient adaptation data.

In the smoothing approach, an estimated parameter is 

obtained in two steps. In the first step, difference is 

calculated between the parameter obtained by maximum 

likelihood estimation and the corresponding prior par­

ameter. Then, the difference is smoothed by adjacent 

differences to the parameter by using the concepts of the 

vector field theory [이 or the Markov random field theory 

[10). The smoothing techniques inherently rcsem이e fuzzy 

smoothing. The degree of smoothing should be carefully 

determined for proper working. This approach requires a 

large number of parameters to be determined empirically 

and therefore increases computational complexity.

In this paper, we adopt the MAP estimation approach 

because it has a simple structure and enables the 

recognizer to converge to a speaker-dependent one with 

sufficient amount of adaptation data. Then we simplify 

the MAP estimation algorithm to reduce the number of 

estimated parameters so that it can be easily applied to 

an existing speech recognizer without making an effort to 

estimate the corresponding hyperparameters. Experimental 

results showed that the vocabulary-independent speech 

recognizer adapted by using the same vocabulary as test 

data reduced 40% of recognition errors. And the 

recognizer adapted by using vocabulary different from 

test data yi이ded recognition results worse than the 

recognizer without speaker adaptation. The performance 

of the vocabulary-independent speech recognizer with 

unsupervised online speaker adaptation was comparable 

to that of a speaker-independent speech recognizer 

trained by a task-oriented speech database.

Following the introduction, a simplified algorithm to 

adapt HMM parameters is described in Section II. In 

Section III, a vocabulary-independent speech recognizer is 

explained. In Section IV, experimental results and dis­

cussion are given. Finally, we summarize the resets in 

Section V.

II. Speaker Adaptation of HMM Parameters

In a speech recognition system based on phonetically- 

tied semicontinuous density HMM, the probability density 

function (pdf) of observing a feature vector ot in state j is 

represented by

K
们= E叫* NW「，卩k, O ⑴

k=i

where is a weights for a Gaussian component, 

糸 2丄)is a Gaussian pdf with a mean vector 四 and 

a covariance matrix £丄 and K is the number of 

codewords. The mean vectors and convariance matrices 

of the Gaussian densities used in summation of (1) 

constitute a codebook defined as

(”侦)스 {(卩I，521), (卩2, 工2),…，(“K，2丄)}・ ⑵

The codebook is shared across among states belonging to 

the same position within each recognition subunit and 

having the same center phoneme. The Gaussian pdf's in 

the above equations are regarded as basic acoustic pro­

totypes, namely senones [11]. We assumed that covariance 

matrices are diagonal. In this paper, we define a distribution 

as a weight vector for the codebook

w, 으 (Wji, 3心…、也" (3)

For an observation sequence O =(<?b o2,-'-,oT) with 

length 7, let s = (&, s>…，s「)be the unobserved state 

sequence. The MAP estimation algorithm finds the para­

meter maximizing the posterior probability given observed 

samples or feature vectors as follows:

A™argmax [max Pr(A, s\O)] (4)
A s
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=argmax [ max Pr(O, s|A) Pr(A)] (5)
A s

where A denotes HMM parameters to be estimated, A 

denotes the estimated HMM parameters, and Pr(A) is a 

prior density of A. Here, the HMM parameters A are 

defined as

A스 (4 w, 卩, £) (6)

follows [3], [4]

(H)

where njk is the probabilistic count of observed samples 

assigned to codeword k in codebook j

njk = 2 Pr(Q G codeword k of codebook j\oh A) (2)

- 勺无+/以

“사 = £¥=/”+$*

where A denotes a state transition matrix of Markov 

chains. Assuming that the prior densities of the transition 

matrix, the distribution, and the codebook are independent 

each other, we can adapt the HMM prameters separately.

Without loss of generality, all the following formulations 

are derived assuming that feature vectors are one­

dimensional and come from the same state of a Markov 

model. Assuming that the mean p. is random with prior 

density and the variance a2 is known and fixed, it is 

reported that the prior density for 卩 is also Gaussian with 

prior mean 内 and prior variance c*  [6]. A mean shift is 

defined as the difference between the MAP-estimated 

mean and the prior mean [5]. Then the mean shift in 

MAP estimation is calculated as [6], [2], [3], [5]

△" 스 " 一四 ⑺

片 -
=__ -----(払 *0 ) (8)

으一 +就
n 0

where n is the number of observed samples, p is a an 

estimated mean, is a sample mean, and cr2 is a sample 

variance. Here, we simplified calculation of the estimated 

mean shift as

사"사: ⑼
n +a

where a can be considered to be reflecting the ratio of the 

sample variance and the prior variance

(T2
冬=~戸 (10)

By using a, there is no need to estimate hyperparameters 

of means.

We did not adapt the covariance matrices and the tran­

sition matrix because their contributions on system per­

formance are not so significant considering computational 

complexity compared with means and distributions.

When prior densities for distributions are assumed as a 

form of the Dirichlet density, distributions are adapted as

叫k Ng场EQ
EL) Pr((?/ G state j I A) (13)=E

t

and pjk is a priori estimate of distributions. Here, we 

calculated hom the prior distribution value as

Pjk = P ^jk- (14)

That is, we need not estimate the hyperparameters for 

distributions.

By using the simplified MAP-estimation algorithm for 

speaker adaptation, we have only to determine a and g 

instead of estimating all the hyperparameters of prior 

densities.

DI. A Vocabulary-Independent Speech Reco­
gnizer

We used 40 phoneme models including silence to build 

a vocabulary-independent isolated word recognizer. We 

clustered all Korean context-dependent subunits to 1,548 

allophonic subunits based on an allophonic decision tree 

[12]. Each subunit except silence was modeled by a 3-state 

left-to-right HMM without skip transition. And 하禮 

silence was modeled by a 1-state HMM. We used a total 

of 118 codebooks of size 50. A codebook was shared 

among states belonging to the same position of subunit 

models and having the same center phone.

To estimate initial HMM parameters of the vocabulary­

independent speech recognizer, we used eight sets of 3,848 

phonetically-optimized words(POW's) [13] pronounced by 

64 speakers (32 males and 32 females). The counts of 

context-dependent subunits in the POW database was 

designed to follow the distribution of the counts in real 

speech. A set of POW's was divided into 8 partitions. 

Then, each partition was pronounced by a speaker and 

was recorded in a sound-proof booth.

We estimated HMM parameters of the vocabulary­

independent speech recognizer in two steps. In the first 

step, context-independent models of the recognizer were 

initialized by using hand-labeled speech data and then 
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trained by bootstrapping. Then, context-dependent subunit 

models were constructed from the estimated context-inde­

pendent models and then trained also by bootstrapping. 

The recognizer obtained by these steps was used as a 

prototype recognizer in the following speaker adaptation 

experiments.

The speech signal was sampled at 16 kHz and segmented 

into 256-sample frames with each frame advancing every 

160 samples. Each frame was parameterized by a 26- 

dimensional feature vector consisting of 13 perceptually 

linear prediction coefficients and their corresponding time 

derivatives. The recognition accuracy of the recognizer 

was 79.6% when two sets of POW's were used as test 

data.

IV. Experimental Results AND Discussion

A. Test and Adaptation Data

We used 75 phonetically-balanced words [4] pronounced 

by five male speakers as adaptation data in the supervised 

offline (batch) mode. For test data, we used 5 sets of 500 

words pronounced by the same speakers. The test words 

consist of Korean railroad station names [14]. The speech 

data in both cases were recorded in a computer room, 

which is a different environment from the the sound-proof 

booth where the training data were recorded. The micro­

phone used to record the test data was also different from 

the microphone used to record the training data.

When a speaker-independent recognizer was trained by 

using the 500 isolated word database pronounced by 36 

speakers and tested by using the same kind of database 

pronounced by 12 speakers the speaker-independent 

speech recognizer showed the recognition accuracy of 

83.6%.

B. Performance of the Vocabulary-Independent Speech 

Recognizer

As shown in Table 1, recognition accuracies of the 

vocabulary-independent and the vocabulary-dependent 

speech recognizers were 60% and 80%, respectively, when 

five speakers wever tested. That is, the number of errors

Table 1. Recognition Accuracies (%) of Vocabulary-Dependent 
and Vocabulary-Independent Speech Recognizers

Speech 
Recognizer

Speaker Average
A B C D E

Vocabulary-Ind. 64 54 63 60 60 60
Vocabulary-Dep. 88 67 85 81 80 80

in the vocabulary-independent speech recognizer increased 

by 50% compared with the vocabulary-dependent one. 

The large differences in recognition accuracies were 

caused by the fact that the recording environments and 

microphones used in the training and test data were dif­

ferent. The differences also come from the confusability 

of the test data. This is because because most of' test 

words consist of only two syllables and they are often 

phonetically different from another wrods by one pho­

neme only. Wc note that interspeaker differences in rec­

ognition accuracies were also large. In our experiments, 

the speaker 'B‘ showed the lowest accuracy.

C. Speaker Adaptation Using the Same Vocabulary as 

Test Data

First, we adapted HMM parameters in a supervised 

offline mode using the same vocabulary as the test data.

Table 2. Recognition Accuracies (%) of Offline Adaptation 
Using the Same Vocabulary as the Test Data with 
Varying Number of Adaptation Words

No. Adapt.
Words

codebook 
adapt.

distribution 
adapt.

codebook & 
distribution adapt.

10 60 59
20 61 64
40 63 67
80 65 76
160 69 82
320 70 81
500 76 92

To adapt codebooks and distributions of the speech 

recognizer, we adopted the segmental MAP algorithm [2] 

and used the values of' a = 10.0 and 0= 1.0. We made no 

special efforts to optimize the values of a and Hence, 

other values may yield better recognition results. Table 2 

shows recognition accuracies with varying the number of 

adaptation words when codebooks and/or distributions 

are adapted. To obtain the results, we used two sets of 

500 test words pronounced by one speaker. Experimental 

results showed that codebook adaptation contributed to 

performance improvements more than distribution adap­

tation. When we performed both codebook and distri­

bution adaptation with 80 adaptation wrods, the speech 

recognizer yielded recognition accuracy improved from 

60% to 76%, or reduced 40% of recognition errors. With 

only 10 words used for adaptation, the recognition accu­

racy became worse. This means that the adaptation data 

were too short to estimate the HMM parameters relia비y. 

When all words in the adaptation data set were used, the 

recognition accuracy was 92%. This can be regarded as 
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the recognition accuracy of a speaker-dependent recognizer.

D. Speaker Adaptation Using Vocabulary Different 

from Test Data

Next, we performed supervised offline speaker adap­

tation using vocabulary different from test data. This

Table 3. Recognition Accuracies (%) of Offline Adaptation of 
Codebooks and Distributions Using Vocabulary Dif­
ferent form the Test Data with Varying Number of 
Adaptation Words

No. Adapt.
Words

Speaker Average
A B C D E

10 60 47 59 56 54 55
20 56 38 53 51 50 50
30 56 38 52 50 46 48
40 54 37 49 47 44 46
50 53 38 48 46 42 45
60 52 34 48 45 41 44
75 49 35 43 43 43 43

experiment was to check whether the vocabulary-indepen­

dent speech recognizer adapted to a new speaker by using 

a predefined adaptation word set can recognize different 

vocabulary in a different task with recognition accuracy 

comparable to the task-oriented speech recognizer. In this 

case, we can use a small-sized phonetically balanced word 

set as adaptation data. Table 3 shows recognition 

accuracies with varying number of adaptation words 

when codebooks and distributions are adapted, respect­

ively. The experimental results showed that with this 

adaptation scheme, the performances became worse than 

the prototype recognizer. C'ombining codebook and dis­

tribution adaptation deteriorated the results form 60% to 

43% when 75 phonetically-balanced words were used for 

adaptation. The performance deterioration was caused 

from the fact that HMM parameters trained by the train­

ing database were disturbed because the recognizer 

나pdated HMM parameters of all states sharing a 

codebook even though the subunits in the adaptation 

data belonging to the states have left-and right-contexts 

different from the subunits in the test data. That is, 

allophonic clustering and codebook sharing used in pho- 

nctically-tied scmicontinuous HMM did harm to the 

speech recognizer with speaker adaptation.

E. Online Speaker Adaptation of Vocabulary-Indepen­

dent Speech Recognizers

Finally, we performed experiments to analyze perform­

ance of a vocabulary-independent speech recognizer with 

unsupervised online speaker adaptation. Table 4 shwos

Table 4. Recognition Accuracies (%) of Online Adaptation of 
Codebooks and Distributions with Varying Number of 
Test Words

No. Test
Words

Speaker Average
A B C D E

100 84 69 69 79 76 75
200 86 75 75 83 77 79
300 83 77 79 82 77 80
400 83 75 77 82 75 78
500 81 75 76 81 73 77

Table 5. Recognition Accuracies (%) of the Vocabulary-Depen­
dent Speech Recognizer with Varying Number of Test 
Words

No. Test 
Words

Speaker Average
A B C D E

100 91 77 86 86 89 86
200 90 76 88 86 87 85
300 90 74 89 88 88 86
400 89 70 86 85 82 82
500 88 67 85 81 80 80

Table 6. Recognition Accuracies (%) of Online Adaptation of
Codebooks and Distributions for 100 Test

Test 
Words

Speaker Average
A B C D E

1-100 84 69 69 79 76 75
101-200 84 80 80 87 78 82
2 이-300 91 81 88 81 78 84
301-400 71 70 72 79 69 72
401-500 75 75 70 77 64 72

recognition accuracies of online speaker adaptation with 

varying number of test words when codebooks and 

distributions are adapted in an online (sequential) mode. 

There was performance improvement from 60% to 77%, 

or 43% of error reduction compared with the prototype 

recognizer when 500 test words were used. We also 

observed the fact that improvement was mainly due to 

error reduction in speaker 'B‘ who showed the lowest rec­

ognition accuracy in the prototype recognizer.

As shown in Table 5, a task-oriented vocabulary­

dependent speech recognizer yielded recognition accuracy 

of 80% when all of the 500 test words are used. This 

result shows that the task-oriented speech recognizer still 

yields 이 iglitly better recognition accuracy than the 

vocabulary-independent speech recognizer with speaker 

adaptation.

Tables 6 and 7 show recognition accuracies of the 

vocabulary-independent and the vocabulary-dependent 

speech recognizers for 100 test words with different time 

intervals when combined codebook and distribution
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Table 7. Recognition Accuracies (%) of the Vocabulary-Depen­
dent Speech Recognizer for 100 Test Words

Test 
Words

Speaker Average
A B C D E

1-100 91 77 86 86 89 86
101-200 88 74 89 86 84 84
201-300 91 71 91 91 90 87
30 ZOO 86 56 79 75 66 72
401-500 82 57 82 67 70 72

adaptation were performed, respectively. The recognition 

results in the tables can be regarded as instantaneous rec­

ognition accuracies while the results in Table 4 can be 

regarded as accumulated accuracies. The recognizer 

yielded lower accuracies in the last two intervals, which 

indicates that the intervals consisted of more confusing 

words. Tables 6 and 7 show that the vocabulary-independent 

speech recognizer achieved the recognition accuracy com­

parable to the vocabulary-dependent speech recognizer 

with sufficient adaptation' data.

V. Summary

We investigated performance of a vocabulary-indepen­

dent speech recognizer with speaker adaptation. The 

vocabulary-independent speech recognizer used in this 

paper does not require a task-oriented speech database to 

estimate HMM parameters, but adapts the parameters 

recursively by using input speech data and the corre­

sponding recognition results. We simplified formula of 

the MAP estimation algorithm to reduce the number of 

parameters to be estimated so that we need not estimate 

hyperparameters of the prior density. Experimental 

results showed that the vocabulary-independent speech 

recognizer with supervised offline speaker adaptation 

reduced 40% of recognition errors when 80 adaptation 

words from the same vocabulary as test data were used. 

But, the recognizer adapted by using vocabulary different 

from test data yielded lower recognition accuracy. This 

result was caused by allophonic clusterin응 and codebook 

sharing used in phonetically-tied semicontinuous HMM. 

The speech recognizer with unsupervised online speaker 

adaptation reduced about 43% of recognition errors. And 

as recognition proceeded, its performance approached to 

that of a speaker-independent speech recognizer trained 

by a task-oriented speech database.
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