• Title/Summary/Keyword: 'Bridge'법

Search Result 604, Processing Time 0.018 seconds

Analysis on Application of Limit State Design Method for Bridge Evaluation Considering PSC Beam Bridge Experiment Results (PSC Beam교의 실측실험을 반영한 한계상태설계법 기반 교량 평가법 적용 분석)

  • Kim, Kyunghyun;Yoo, Minsun;Paik, Inyeol;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.235-244
    • /
    • 2021
  • This study analyzes the applicability of limit state design method on bridge evaluation by considering the experiment of the existing bridge. The test strength of the member is obtained from the PSC beam bridge experiment. The test strength is compared with the calculated strength obtained from the statistical characteristics of material test strength and the two values are almost the same. The response modification factor and dynamic impact factor are obtained from the vehicle loading test. The rating factor is calculated by applying limit state design method as well as current evaluation method and the results are compared. The reliability index of the test bridge is calculated by using the statistical properties of the member strength obtained from material test and simulation. When the statistical properties of the PSC beam tested in this study are applied, the reliability index with a larger value was obtained than the reliability index obtained with the statistical properties of the design code.

Design Comparison of Totally Prefabricated Bridge Substructure Systems Designed by Present Design and LRFD Methods (현행설계법 및 하중저항계수설계법에 의한 완전 조립식 교량 하부구조의 설계결과 비교)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 2011
  • The design comparison and nonlinear analysis of totally prefabricated bridge substructure systems are performed. The prefabricated bridge substructures are designed by the methods of present design and load and resistance factor design (LRFD). For the design, the current Korea Highway Bridge Code (KHBD), with DB-24 and DL-24 live loads, is used. This study evaluates the present design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used.

A case study on the lateral movement of bridge abutment foundation and repair methods (교대의 측방변위와 대책공법에 대한 사례연구)

  • Lee, Byung-Suk;Lee, Jae-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1359-1369
    • /
    • 2012
  • In the case of using pile foundation to support bridge abutments on soft ground, the soft ground often causes serious troubles such as lateral movement of bridge abutments by lateral surcharges. In this paper, we investigated and measured the amount of strain of a bridge abutment in the south-western part of Korea. To check the stability and possibility of lateral movement of the bridge abutment, we used the four analysis methods and compared those results; lateral movement index, index for decision of lateral movement and infinite element analysis method. We performed soil and ground tests to fine the causes of the strain and lateral movement. After reviwing several types of repair methods, we suggested the anker reinforcement method along with surcharge process method as a proper repair and rehabilitation of the bridge abutment. Our investigation by through the infinite element analysis method confirmed the effectiveness of the anker reinforcement method allong with the surcharge process method.

Cable Tension Force Management Using Vibration Method at Cable Stayed Bridge Construction Stages (진동법을 이용한 사장교 시공단계별 케이블 장력관리)

  • Park, Yeon-Soo;Cheon, Dong-Ho;Cheon, Yang-Bae;Kang, Kyoung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 2005
  • Design and construction of long-span bridge are recently increasing by development of computer technology. Specially, cable stayed bridge and suspension bridge having cable component are representative of long-span bridge may do. Therefore, this paper a present a methodology for cable tension force monitoring in cable-stayed bridge under construction using acceleration data acquired by the vibration method. To improve accuracy construction, all stay cables are measured, according to 4-step construction stage and change of temperature.

Development of Macro-Element for the Analysis of Elastically Supported Plates (탄성 지지된 판구조 해석을 위한 매크로 요소의 개발)

  • 강영종;박남회;앙기재;최진유
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.25-35
    • /
    • 2000
  • The superstructure of general bridge like slab bridge and slab on girder bridge is composed of elastically supported isotropic plate. The objective of this study is to develop the new analysis method for elastically supported plate with general edge beam or girder(boundaries) under arbitrary out of plane loading. The displacement solutions for the macro-element of plate and beam are obtained by solving for the unknown interactive forces and moments at the beam or nodal line locations after satisfying equilibrium equation along the nodal line. The displacement functions for macro-elements ate proposed in single Fourier series using harmonic analysis, and the equilibrium equations of nodal line are composed by using slope-deflection method. The proposed analysis method is programmed by MS-Fortran and can be applied to all types of isotropic decks with bridge-type boundaries. Numerical examples involving elastically supported plates with various aspect ratio, loading cases, and bridge-type boundary conditions are presented to demonstrate the accuracy of this program. The major advantage of this new analysis method is the development of a simple solution algorithm, leads to obtain rapidly responses of bridge deck system. This proposed method can be used in parametric study of behavior of bridge decks.

  • PDF

Form Generation of Structural Bridges based on Geometric Approach (기하학적 접근법에 의한 교량구조의 형태생성)

  • Kim, Nam-Hee;Koh, Hyun-Moo;Hong, Sung-Gul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.379-386
    • /
    • 2010
  • In conceptual design stage it is important to develop structural forms freely. However, structural engineers are prompt to consider types of structural systems following load paths rather than to imagine various forms. This study attempts to expand the limit of imagination that was blocked within engineering approach newly from geometric perspective view. First of all, existing bridge structures are reviewed in terms of geometric vocabulary. Some bridge forms showing apparent geometric features are regenerated through the geometric approach proposed in this study. This study is not to develop geometric principle to build new structural forms, but to propose the geometric approach to generate design alternatives using the well established geometry concepts.

Study on the Evaluation Method of Load Carrying Capacity Based on Nonlinear FEM Analysis for PSC I Typed Girder Bridge (비선형 FEM 해석에 기초한 PSC I 거더교량의 내하력 평가기법에 관한 연구)

  • Sim, Jongsung;Kim, Gyu-Seon;Moon, Do-Young;Ju, Minkwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.81-88
    • /
    • 2008
  • The purpose of this study is to improve and modify the evaluation method of load carrying capacity for simply supported PSC I Typed girder bridge. To do this, conventional ASD(Allowable Stress Design) and USD(Ultimate Strength Design) evaluation method were initially investigated and it was evaluated that the conventional USD evaluation method may perform the load carrying capacity as conservative because it do not consider the prestressing upper-force effect of simply supported PSC I Typed girder bridge. To reasonably evaluate the load carrying capacity, the upper-force effect should be considered to the PSC I Typed girder bridge. Thus, in this study, the MUSD method was Suggested and compared to the nonlinear FEM based-load carrying capacity using the live load factor and the efficiency of the evaluation method of load carrying capacity was investigated by experimental and analytical result. In the result of this study, the suggested MUSD evaluation method showed a reasonable evaluating result for the simply supported PSC bridge. For the new technique of load carrying capacity based on the nonlinear FEM analysis, it could effectively simulate the load-deflection relationship and the load carrying capacity of the PSC I Typed girder bridge.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Analysis of Live Load Factor for Bridge Evaluation Through Reliability Based Load Factor Calibration (신뢰도기반 하중계수 캘리브레이션을 통한 교량 평가 활하중계수 분석)

  • Yoo, Min-Sun;Kim, Kyung-Hyun;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.212-221
    • /
    • 2022
  • In this paper, the evaluation procedure applying the limit state design method is studied to be consistent with the newly issued bridge design code in Korea. The live load factor for evaluation is proposed by calibrating for the target reliability index through reliability analysis. Using the actual bridge information collected for the representative bridge types in Korea, the load effects of the design live loads for the previous and current design codes are calculated and compared. The live load factor is calibrated through reliability analysis using the minimum required strength which equals to the load effect obtained for the example bridge. Bridge evaluation is performed by applying the live load factors for the evaluation level as well as design level. The load rating result is generally increased by applying the limit state design method compared to the previous design method and applying the proposed load factor for lowered target reliability index further increased the rating result.

Evaluation of Seismic Response for a Suspension Bridge (현수교의 지진응답 평가)

  • 김호경;유동호;주석범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response, the response spectrum method vs. the linear dynamic analysis method, and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities and the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.