• Title/Summary/Keyword: $tan{\delta}$

Search Result 521, Processing Time 0.021 seconds

A Study on the Correlation between the Lapse of Time and Diagnostic Test Results of Large Rotating Machine Windings (대형 회전기의 절연진단결과와 경년 특성과의 상관관계에 관한 연구)

  • Kim, K.H.;Cho, Y.O.;Sun, J.H.;Kim, Y.B.;Ryu, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.966-968
    • /
    • 1992
  • We have done the insulation diagnostic test of generators in domestic five power plants since 1987 and tested A.C. current increasing rate($\Delta$I), $\Delta$tan$\delta$ and partial discharge in generator winding insulation. This study is described the correlation between nondestructive result(A.C. current increasing rate, $\Delta$tan$\delta$ and partial discharge) and lapse of time in generators.

  • PDF

Characteristics of Insulation Aging in Large Generator Stator Windings (대용량 발전기 고정자 권선의 절연열화 특성)

  • Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1375-1379
    • /
    • 2009
  • Insulation tests have been performed on two generator stator bars under accelerated aging under a laboratory environment. Electrical stress was applied to stator bar No.1, and electrical and thermal stresses were applied to stator bar No.2. Nondestructive stator insulation tests including the ac current, dissipation factor($tan{\delta}$), and partial discharge tests have been performed on both bars as the bars were aged for 11460 hours. Experimental test results show that ${\Delta}I$, ${\Delta}tan{\delta}$, and partial discharge of No. 1 and No.2 stator bars increased with increased in aging time. It has been concluded from the test that the stator insulation of the two generators are in good condition.

The Effect of Pressurized Hydrogen on the Aging and Partial Discharge Activity in Generator Winding Insulations (가압 수소가 발전기 고정자 권선 절연 열화와 부분 방전 특성에 미치는 영향)

  • 김진봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.100-107
    • /
    • 1999
  • The purpose of the study is to investigate the effect of H$_2$ pressure on partial discharge (PD) activity and aging rate in turbine generator winding insulations. A series of field tests and laboratory tests were peformed to investigate the effect of $H_2$ pressure on PD activity. Field tests were conducted at two unit turbine generators in two conditions, in $H_2$ pressure and in air atmosphere. Obtained results are as follows ; 1) ${\Delta}tan{\delta}$ and maximum partial discharge are reduced with increase of $H_2$ pressure and partial discharge inception voltage. 2) The reduction ratio of ${\Delta}tan{\delta}$ due to $H_2$ pressure is higher than one of PD magnitude. 3) Partial discharge pulses suffer from attenuation and distortion when transmitted along windings, because of the complex L-C network between windings. From the result, partial discharge pulses are subjected to resonance phenomena in a generator winding.

  • PDF

Development of Vibraction and Impact Noise Dampling Wood-based Composites(I) -Dynamic Mechanical and Vibration Damping Properties of Plasticized PVC- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(I) -가소화 폴리염화비닐의 동적점탄성과 진동흡수성능-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.36-46
    • /
    • 1998
  • The aim of this study was to develop the noise and vibration damping wood-based composites by using viscoelastic polymer materials. Polyvinylchloride(PVC) was plasticized with 20-140 phr bis(2-ethylhexyl) phthalate(DOP) and the dynamic tensile mechanical properties were measured at 110Hz and approximate temperature range -100 to 150$^{\circ}$ using a Rheovibron Instrument. The PVC/DOP blends were shown to be compatible in all proportions, and both T(E”$_{max}$) and T(tan${\delta}_{max}$) shifted to the lower temperature side as the DOP content increased. The vibration damping properties of wood/polymer composites were measured using the Rheovibron instrument in a bending mode. The composite damping factor(tan ${\delta}_{c}$) of wood /PVC-DOP/wood sandwich structure correlated with the loss factor and that of the coated structure correlated with the loss modulus(E”) of the polymer layer. In addition, the sandwich structure was found to be more effective in damping than the coated structure. The logarithmic decrement (${\Delta}$c) curve of a sandwich structure, which was determined by the free-free flexural vibration method was similar in shape to the tan ${\delta}_{c}$ curve.

  • PDF

A Study on the Physical Properties of Reinforcing Fillers with Dual Phase Structure (이중상 구조를 가진 보강성 충전제의 물리적 특성 연구)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.608-613
    • /
    • 1998
  • The purpose of this experiment was the physical properties of rubber compounds with DPCB and pure carbon black. Si-O peak in the silcia surface was observed at the range of wavenumber from 1,100 to 1,200 in the DPCB by FT-IR analysis. Cure rate of rubber compounds containing DPCB and organic silane coupling agent were (Si69) delayed compared with those containing pure carbon black. 300% modulus and interaction coefficient of DPCB with silane coupling agent were higher than those of pure carbon black and PICO weight loss amount showed constant value. It was found that $0^{\circ}C$ tan$\delta$ of rubber compounds with DPCB was larger than those of pure carbon black at 2.0% silane coupling agent based on 50 phr DPCB and $60^{\circ}C$ tan$\delta$ of rubber compounds with DPCB decreased as increasing the usage coupling agent. Consequently, it is postulated that DPCB is strong candidate material for lowering rolling resistance under constant abrasion resistance.

  • PDF

Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.235-244
    • /
    • 2012
  • A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (${\alpha}_F$), crosslinking density, and viscoelastic property ($tan{\delta}$) were investigated. As accelerator concentration increased, the $t_{s2}$ and $t_{90}$ decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The $tan{\delta}$ value measured at room temperature was higher than that of the $70^{\circ}C$. The ${\alpha}_F$ value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.

Dielectric Characteristics of EVA and LLDPE Films (에틸렌비닐아세테이트와 선형저밀도폴리에틸렌 박막의 유전특성)

  • 성민우;고시현;신종열;이충호;조경순;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.783-786
    • /
    • 2000
  • In this paper, physical properties and dielectric characteristics of LLDPE and EVA which are used as a blending material to improve PE's performance are studied. LLDPE of 0.92[g/cm3] and EVA with the EVA contents of 12.5[%1 were selected as specimens, and X-ray diffraction(XRD) are used to analysis physical properties. We measured dielectric constant with the frequency range from 20[Hz] to 1 [MHz], applied voltage 6[V] and the temperature from 25[$^{\circ}C$] to 110[$^{\circ}C$]. From XRD, LLDPE has a crystallinity of 53[%] and, 46[%] for EVA. LLDPE has as low tan$\delta$ as of 10$^{-3}$ ~10$^{-4}$ and inflection point near 500[Hz]. At frequency region lower than 500[Hz], tan$\delta$ decreases with frequency and increases with temperature and it is considered to be caused by conductive carriers within specimen. Over 500[Hz], it is the reverse and we thought that it was caused by decrease of relaxation time due to Debye theory, EVA has tan$\delta$with the values of 10$^{-2}$ ~10$^{-3}$ , which is higher than that of LLDPE, and it has inflection point at 60[Hz]. It is shown that Dielectric characteristics of EVA are similar to LLDPE's.

  • PDF

Thermal Stability of Glass Powder and Rubber-Filled Phenolic Resins and Dynamic Mechanical Properties of Glass Braid/Phenolic Composites (유리분말 및 고무 충진 페놀수지의 열안정성 및 Glass Braid/페놀수지 복합재료의 동역학적 열특성)

  • Yoon, Sung Bong;Cho, Donghwan;Lee, Geon-Woong
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.14-22
    • /
    • 2007
  • In the present study, the effect of milled glass powder and liquid-type nitrile rubber (NBR) on the thermal stability of phenolic resin and the dynamic mechanical properties of glass braid/phenolic composites has been investigated by means of thermogravimetric analysis and dynamical mechanical analysis. It was found that both milled glass power and NBR filled in the waterborne phenolic resin significantly influenced the thermal stability of phenolic resins and the storage modulus and tan delta of the composites. The presence of glass powder increased the thermal stability of the phenolic resin, whereas the presence of NBR resulted in the weight loss in the specific temperature range. The thermal stability of the phenolic resins without and with the fillers was dependent not only on the cure temperature but also on the cure time. The variation of the storage modulus and tan ${\delta}$ of strip-type glass braid/phenolic composites was also influenced with the introduction of glass powder and NBR to the phenolic matrix as well as by the cure conditions given.

  • PDF

A Study on the Viscoelastic Properties of Rubber Blends for Shoes Outsole (신발 밑창용 고무 블렌드물의 점탄성적 특성에 대한 연구)

  • Park, Cha-Cheol;Pyo, Kyung-Duk
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • The CIIR blends, which is use for shoes outsole, with SSBR, XNBR and KBR were prepared with various mixing ratio. The viscoelastic properties of these blends, such as tensile modulus, rebound resilience, storage modulus, tan${\delta}$, and creep properties were measured. In the rebound resilience measurement, KBR showed the highest value, which means the lowest energy absorption to stress. As SSBR, XNBR and KBR blends with CIIR, the rebound resilience of the mixtures showed tendency to increase in arithmetic average. In the creep measurement, CIIR showed the highest visconse strain to stress, SSBR and KBR showed lower visconse strain. Maximum tan${\delta}$ peak of CIIR, SSBR and XNBR appeared at $-30^{\circ}C$, $5^{\circ}C$ and $0^{\circ}C$ respectively.