DOI QR코드

DOI QR Code

DECOMPOSITION OF THE INVARIANT LAPLACIAN IN THE COMPLEX BALL

  • Kwon, Ern Gun (Department of Mathematics Education Andong National University)
  • Received : 2018.05.18
  • Accepted : 2018.08.22
  • Published : 2019.05.31

Abstract

We, in this note, decompose the invariant Laplacian of the unit complex ball of ${\mathbb{C} }^n$ by the radial part and tangential part as ${\tilde{\Delta}}={\tilde{\Delta}}_{rad}+{\tilde{\Delta}}_{tan}$. We give several properties and interpretations involved with this decomposition.

Keywords

References

  1. E. G. Kwon, Decomposition of the Laplacian and pluriharmonic Bloch functions, Filomat 31 (2017), no. 1, 97-102. https://doi.org/10.2298/FIL1701097K
  2. E. G. Kwon and J. H. Park, On M-subharmonicity in the ball, Commun. Korean Math. Soc. 28 (2013), no. 3, 511-516. https://doi.org/10.4134/CKMS.2013.28.3.511
  3. W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York, 1980.
  4. M. Stoll, Invariant Potential Theory in the Unit Ball of $\mathbb{C}^n$, London Mathematical Society Lecture Note Series, 199, Cambridge University Press, Cambridge, 1994.