• Title/Summary/Keyword: $poly-{\beta}-hydroxybutyrate$

Search Result 41, Processing Time 0.036 seconds

Relationship between Biodegradation of Biosynthetic Plastics, Poly-$\beta$-Hydroxybutyrate, and Soil Temperature (생합성 플라스틱 Poly-$\beta$-Hydroxybutyrate의 생분해와 토양온도의 관계)

  • 조강현;이혜미;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.277-282
    • /
    • 1998
  • The microbial degradation of $poly-{\beta}-hydroxybutyrate$ (PHB) films was studied in soil microco는 incubated at a constant temperature of 2, 10, 20, 30 and $40^{\circ}C$ for up to 49 days. The degradation rate measured through loss of weight was enhanced by incubation at a higher temperature. At the soil temperature $40^{\circ}C$, $poly-{\beta}-hydroxybutyrate$ was rapidly degraded at a decay rate of 3.5% weight loss per day. The degradation of $poly-{\beta}-hydroxybutyrate$ did not affected significantly the chemical properties of soils such as pH and electric conductivity. However, microbial activity of soil in terms of dehydrogenase activity was increased by the degradation of $poly-{\beta}-hydroxybutyrate$.

  • PDF

Production of Poly-$\beta$-hydroxybutyrate and Poly-$\beta$-(hydroxybutyrate-co-hydroxyvalerate) by Fed-batch Culture of Alcaligenes eutrophus (Alcaligenes eutrophus의 유가식 배양에 의한 Poly-$\beta$-hydroxybutyrate 및 Poly-$\beta$-(hydroxybutyrate-co-hydroxyvalerate)의 생산)

  • Choi, Eun-Soo;Lee, In-Young;Kang, Choong-Kyung;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.588-592
    • /
    • 1995
  • Fed-batch fermentation was used to produce the high concentrations of poly-$\beta $-hydroxybutyrate (PHB) and poly-$\beta $-(hydroxybutyrate-co-hydroxyvalerate) (PHB/V). Specific growth rate ($\mu $), yield of cell from glucose (Y$_{x/s}$) were calculated from the two samples in 3 to 5 hours of interval and they were reflected on the determination of glucose feeding rate to maintain the glucose concentration at around 10 g/l in the culture broth. PHB was accumulated after the nitrogen became limited at 60 g/l of dry cell weight by changing ammonia water to 4N-NaOH solution. As results, the final dry cell weight (DCW) of 170 g/l, PHB of 115 g/l were obtained in 50 hours and the overall productivity was 2.4 g/l$\cdot $h. After PHB accumulation, cosubstrate of glucose and propionic acid (PA) was fed to accumulate PHB/V. But, PA feeding rate was decreased from 3 g/l$\cdot $h to 1 g/l$\cdot $h to prevent PA from accumulating to high level in the broth, which is very inhibitory to the cells. As results, DCW, PHB and PHV were 147.5 g/l, 90 g/l and 8 mole % of hydroxyvalerate, respectively.

  • PDF

Production of Poly($\beta$-hydroxybutyrate-co-$\beta$-hydroxyvalerate) by Two-stage Fed-batch Fermentation of Alcaligenes eutrophus

  • Lee, In-Young;Kim, Guk-Jin;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.292-296
    • /
    • 1995
  • Production of poly($\beta$-hydroxybutyrate-co-$\beta$-hydroxyvalerate)[poly(HB-co-HV) from glucose and propionic acid was studied in a two-stage fed-batch fermentation using Alcaligenes eutrophus NCIMB 11599. When either glucose became sufficient or the feeding rate of propionic acid decreased, production of poly(HB-co-HV) increased but concomitantly resulted in a reduced fraction of HV. During the copolymer accumulation stage, the specific production rate of hydroxyvalerate (HV) increased up to 0.013 (g-HV/g-RCM/h) but it decreased as propionic acid was accumulated. Control of the propionic acid concentration in the medium, therefore, is considered to be one of the most important operating parameters for production of poly(HB-co-HV) with a higher HV fraction. A high titre of poly(HB-co-HV) (85.6 g/I) with HV fraction of 11.4 mol$%$ could be obtained in 50 h by controlling the propionic acid concentration at 1 to 4 g/I.

  • PDF

FT-IR Spectrometric Analysis of Poly-$\beta$-Hydroxybutyrate in Cyanobacteria under Phosphate Stress (인산결핍 생장조건에서 Cyanobacteria가 생성하는 Poly-$\beta$-hydroxybutyrate의 적외선 분광법에 위한 구조분석)

  • Kwak, In-Young;Moon, Young-Kil;Lee, Ki-Sung
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.53-56
    • /
    • 1997
  • The structure of poly-$\beta$-hydroxybutyrate (PHB) in Chlorogloea fritschii was analyzed by FT-IR spectrometry under various conditions (phosphate starves or sufficient conditions). They exhibited characteristic absorption peaks for PHB, such as C=O stretching band at 1700-1800 $cm^-1$and C-H stretching bands at about 2900 $cm^-1$, however, the intensity of C-H stretching peaks, relative to the rest of the spectrum was increased under phosphate starved condition, which suggests that C. fritschii might produce another modified PHB polymer under phosphate starved condition.

  • PDF

Assesment of Biodegradability of Poly-$\beta$- Hydroxyvbutyrate by Pot-Test (Pot-Test에 의한 Poly-$\beta$-Hydroxybutyrate의 생분해성 평가)

  • 손대주;김희구
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • The biodegradable characteristics of poly-$\beta$-hydroxybutyrate(PHB) film by fun맥 and soil burial are Investigated. As the results of the American Standards for Testing and Materials(ASTM) method, the you of Aspergillus niger was apparent on the PHB containing plate. This suggests that PHB was utilized as the sole carbon source by Aspergillus niger and ASTM method may have applications as measuring means of biome gradability of polyhydroxyalkanoic acid(PHA). PHB film was studied by monitoring the time-dependant changes in weight loss of PHB film under 30% and relative humidity 80 % during pot-test. As the results of pot-test, PHB film was decomposed about 87 % in 30 days by soul microorganisms. PHB film was more slowly degraded than PHB/HV film.

  • PDF

High Cell Density Culture of Alcaligenes eutrophus and Poly-$\beta$-hydroxybutyrate Production by Optimization of Medium Compositions (배지조성 최적화를 통한 Alcaligenes eutrophus의 고농동 세포배양 및 Poly$\beta$-hydroxybutyrate 생산)

  • 이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.401-406
    • /
    • 1994
  • The medium compositions of Alcaligenes eutrophus were optimized for increasing PHB productivity. It is very important to optimize the concentrations of inorganic salts and trace eleme- nts as well as carbon and nitrogen sources to maximize cell growth rate and productivity. The fed-batch culture of Alcaligenes eutrophus by dual feeding of ammonia water and glucose under optimized initial medium concentrations was carried out. Glucose was fed manually according to glucose consumption rate and ammonia water by pH-stat. The final cell concentrations and PHB content in 30 hours were 122 g/l and 65% of dry cell weight(yielding 79 g of PHB/l), respectively and 2.64 g/l/hr of PHB production rate was obtained.

  • PDF

Poly$({\beta}-hydroxybutyrate-co-3-hydroxyvalerate)$의 생분해도에 미치는 hydroxyvalerate 함량의 영향

  • Im, Seol-Hui;Jo, Gyeong-Suk;Ryu, Hui-Uk;Choe, Hui-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.175-178
    • /
    • 2000
  • Biodegradability of the $poly({\beta}-hydroxybutyrate-co-3 -hydroxyvalerate)$ [PHB/V] containing 0, 10 and 15mol% hydroxyvalerate [HV] was studied. Bioderadability of PHB/V was evaluated at $30^{\circ}C$ for 58 days and $55^{\circ}C$ for 33 days by monitoring the time-dependent changes in weight loss(erosion) of aerobic conditions in a temperature-controlled microcosms containing the earthworm cast($30^{\circ}C$) and compost ($55^{\circ}C$). It was found that PHB/V biodegradability occurred with increasing HV monomer concentration from 0 mol% to 15 mol%.

  • PDF

Characterization of microbial poly-$\beta$-hydroxybutyrate (Microbial Poly-$\beta$-hydroxybutyrate의 구조특성)

  • Moon Sik Kim;Jong Kun Lee;Sang Joon Lee;Soo Min Park
    • Textile Coloration and Finishing
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1995
  • Poly-$\beta$-hydroxybutyrate(PHB) was biosynthesized using Alcaligenes sp. FL-027. Alcaligenes sp. FL-027 was cultivated by fed-batch methods, in order to promote cell growth and PHB accumulation with carbon source. The cells were first grown at 3$0^{\circ}C$ on the fermentor. The structure of biosynthesized PHB is investigated by the NMR, IR. The crystalline portions were identified through the use of DSC and X-ray diffractometer. The melting point was about 16$0^{\circ}C$ and the diffraction peaks of (020) and (110) were shown at 13$^{\circ}$ and 17$^{\circ}$, respectively.

  • PDF

A Simple Method for Recovery of Microbial $Poly-{\beta}-hydroxybutyrate$ by Alkaline Solution Treatment

  • Lee, In-Young;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.238-240
    • /
    • 1995
  • A novel and simple purification method for microbial $poly-{\beta}-hydroxybutyrate$ (PHS) was developed. Sodium hydroxide was found to be efficient for digesting cell materials. Initial biomass concentration, NaOH concentation, digestion time, and incubation temperature were optimized. When 40 g/l of biomass was incubated in 0.1 N NaOH at $30^{\circ}C$ for 1 h, PHB purity of 88.4% with a weight average molecular weight ($M_w$) of 770,000 and a polydispersity index (PI) of 2.4 was recovered with a yield of 90.8% from the biomass which initially contained PHB of a $M_w$ of 780,000 and a PI of 2.3.

  • PDF

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF