• 제목/요약/키워드: $k-{\epsilon}$ model

검색결과 260건 처리시간 0.024초

RNG $k-\varepsilon$ 모델의 적용성에 대한 연구 (A Study of Applicability of a RNG $k-\varepsilon$ Model)

  • 양희천;유홍선;임종한
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

소산율 방정식의 개선을 통한 저레이놀즈수 k-.epsilon. 모형의 개발 (Developing of low Reynolds number k-.epsilon. model with improved .epsilon. equation)

  • 송경;유근종;조강래
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.685-697
    • /
    • 1998
  • Series of recent k-.epsilon. model modification have been carried out with the aid of DNS data to include the effect of near wall. Though these methods opened new way of turbulence modelings, newly developed turbulence models of its kind had yet shortcomings in prediction for the turbulent flows with various Reynolds numbers and various geometric conditions. As a remedy for these shortcomings, a new k-.epsilon. model proposed here by improving the dissipation rate equation and the damping function for eddy viscosity model. The new dissipation rate equation was modeled based on the energy spectrum and magnitude analysis. The damping function for eddy viscosity was also formulated on the ground of distribution of dissipation rate length scales near a wall and the DNS data. The new k-.epsilon. model was applied to the fully developed turbulent flows in a channel and a pipe with a wide range of Reynolds numbers. Prediction results showed that the present model represents properly the turbulence properties in all turbulent regions over a wide range of Reynolds numbers.

비선형 $k-{\epsilon}$ 난류모델에 의한 원추형 디퓨저 유동해석 (Numerical Simulation of a Conical Diffuser Using the Nonlinear $k-{\epsilon}$ Turbulence Model)

  • 이연원
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 1998
  • A diffuser, an important equipment to change kinetic energy into pressure energy, has been studied for a long time. Though experimental and theoretical researches have been done, the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned, various numerical studies have also been done. On the contrary, many turbulence models have constraint to the applicability of diffuser-like complex flows, because of anisotropy of turbulence near the wall and of local nonequilibrium induced by an adverse pressure gradient. The existing $k-{\epsilon}$ turbulence models have some problems in the case of being applied to complex turbulent flows. The purpose of this paper is to test the applicability of the nonlinear $k-{\epsilon}$ model concerning diffuser-like flows with expansion and streamline curvature. The results show that the nonlinear $k-{\epsilon}$ turbulence model predicted well the coefficient of pressure, velocity profiles and turbulent kinetic energy distributions, however the shear stress prediction was failed.

  • PDF

저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구 (A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model)

  • 김명호;신종근;최영돈
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1940-1954
    • /
    • 1992
  • 본 연구에서는 가공기 자체의 파라메터와 성능에 관한 연구로서 출력 에너지 가 서로 다른 가공기를 사용하여 SUS 304 스테인리스 시험편을 관통, 절단하면서 출력 에너지와 최대 출력을 비교하여 보고, 시험편 관통시 주파수와 출력 에너지와의 관계, 시험편 관통시 응융 금속 제거량에 의한 절단 속도의 예측, 서로 다른 출력의 가공에 있어서 슬릿 절단 폭, 커프 폭, 드로스 길이, 절단면의 표면 거칠기 등을 비교하여 출 력차에 따른 가공 특성을 고찰하였다.

축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價 (Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II) (The Structure of Axisymmeric Turbulent Diffusion Flame(II))

  • 이병무;신현동
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.70-77
    • /
    • 1986
  • 본 논문에서는 재순환 영역이 존재하는 축대칭 난류 확산화염 구조예측의 전 단계로서, 이미 발표된 바있는 필자의 실험 데이터를 바탕으로 하여 등온유동에 서의 난류모델을 검토한다. 유선의 곡률이 큰 유동에 2방정식 모델을 적용함은 큰 결점을 보완한 수정-2방정식모델을 채택하여 실험결과와 비교, 검토하여 모델의 타당성을 조사하였다.

저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구 (A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model)

  • 김형수;최영기;유홍선
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발 (Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.