• Title/Summary/Keyword: $k-\varepsilon$ model

Search Result 750, Processing Time 0.021 seconds

Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer (대기 혼합층 발달 과정의 모형 실험과 수치 해석)

  • 이화운
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF

Growth and Optical Properties of PbSnSe Epilayers Grown on BaF2(111) (PbSnSe 단결정 박막의 성장과 광학적 특성)

  • Lee, Il-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $PbSnSe/BaF_2$ epilayers. The PbSnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy (HWE) technique. It was found from the analysis of X-ray diffraction patterns that $PbSnSe/BaF_2$ epilayer was grown single crystal with a rock-salt structure oriented along [111] the growth direction. Using Rutherford back scattering, the atomic ratios of the PbSnSe was found to be proper stoichiometric. The best values for the full width at half maximum (FWHM) of the DCXRD was 162 arcsec for PbSnSe epilayer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $PbSnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}(E)$ of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points(CPs) in the optical spectra. The real and imaginary parts(${\varepsilon}1$ and ${\varepsilon}2$) of the dielectric function ${\varepsilon}$ of PbSe were measured, and the observed spectra reveal distinct structures at energies of the E1, E2 and E3 CPs. These data are analyzed using a theoretical model known as the model dielectric function (MDF). The optical constants related to dielectric function such as the complex refractive index ($n^*=n+ik$), absorption coefficient (${\alpha}$) and normal-incidence reflectivity (R) are also presented for $PbSnSe/BaF_2$.

  • PDF

Numerical Analysis for a Swirling Confined Non-Premixed Flame with Modified Lagrangian model (수정 Lagrangian model을 이용한 선회 비 예혼합 화염에 대한 수치적 연구)

  • Min, Byoung-Hyouk;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.113-122
    • /
    • 2002
  • The purpose of this study is to verify that the modified Lagrangian model can predict temperature, flow and scalar fields in the high temperature recirculation region of swirling confined diffusion flame. In the meantime numerical results from EBU and Equilibrium PDF models as well as experimental results are compared with those from the modified Lagrangian model. Adaption of three different turbulent models were accompanied with this procedure. Look-up table of the ignition characteristic time scale which is one of important factors of the Lagrangian model was referred to the 11-step reduced mechanism. Eventually, results with the Lagrangian model show a good accordance with experimental results, which shows the validity of this model. Results from Chen's model differ from those of the others. Numerical results of ${\widetilde{k}$ show significant deviation from experimental results for three models.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer (난류유동 및 대류열전달에 대한 비선형 난류모형의 개발)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Assessment of Reynolds Stress Turbulence Closures in the Calculation of a Transonic Separated Flow

  • Kim, Kwang-Yong;Son, Jong-Woo;Cho, Chang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.889-894
    • /
    • 2001
  • In this study, the performances of various turbulence closure models are evaluated in the calculation of a transonic flow over axisymmetric bump. k-$\varepsilon$, explicit algebraic stress, and two Reynolds stress models, i.e., GL model proposed by Gibson & Launder and SSG model proposed by Speziale, Sarkar and Gatski, are chosen as turbulence closure models. SSG Reynolds stress model gives best predictions for pressure coefficients and the location of shock. The results with GL model also show quite accurate prediction of pressure coefficients down-stream of shock wave. However, in the predictions of mean velocities and turbulent stresses, the results are not so satisfactory as in the prediction of pressure coefficients.

  • PDF