• Title/Summary/Keyword: $Z_2$

Search Result 7,099, Processing Time 0.044 seconds

SELF-RECIPROCAL POLYNOMIALS WITH RELATED MAXIMAL ZEROS

  • Bae, Jaegug;Kim, Seon-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.983-991
    • /
    • 2013
  • For each real number $n$ > 6, we prove that there is a sequence $\{pk(n,z)\}^{\infty}_{k=1}$ of fourth degree self-reciprocal polynomials such that the zeros of $p_k(n,z)$ are all simple and real, and every $p_{k+1}(n,z)$ has the largest (in modulus) zero ${\alpha}{\beta}$ where ${\alpha}$ and ${\beta}$ are the first and the second largest (in modulus) zeros of $p_k(n,z)$, respectively. One such sequence is given by $p_k(n,z)$ so that $$p_k(n,z)=z^4-q_{k-1}(n)z^3+(q_k(n)+2)z^2-q_{k-1}(n)z+1$$, where $q_0(n)=1$ and other $q_k(n)^{\prime}s$ are polynomials in n defined by the severely nonlinear recurrence $$4q_{2m-1}(n)=q^2_{2m-2}(n)-(4n+1)\prod_{j=0}^{m-2}\;q^2_{2j}(n),\\4q_{2m}(n)=q^2_{2m-1}(n)-(n-2)(n-6)\prod_{j=0}^{m-2}\;q^2_{2j+1}(n)$$ for $m{\geq}1$, with the usual empty product conventions, i.e., ${\prod}_{j=0}^{-1}\;b_j=1$.

ON A CLASS OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Shukla, S.L.;Chaudhary, A.M.;Owa, S.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.129-139
    • /
    • 1988
  • Let $T^{\alpha}_{\lambda}$(p, A, B) denote the class of functions $$f(z)=z^p-{\sum\limits^{\infty}_{k=1}}{\mid}a_{p+k}{\mid}z^{p+k}$$ which are regular and p valent in the unit disc U = {z: |z| <1} and satisfying the condition $\left|{\frac{{e^{ia}}\{{\frac{f^{\prime}(z)}{z^{p-1}}-p}\}}{(A-B){\lambda}p{\cos}{\alpha}-Be^{i{\alpha}}\{\frac{f^{\prime}(z)}{z^{p-1}}-p\}}}\right|$<1, $z{\in}U$, where 0<${\lambda}{\leq}1$, $-\frac{\pi}{2}$<${\alpha}$<$\frac{\pi}{2}$, $-1{\leq}A$<$B{\leq}1$, 0<$B{\leq}1$ and $p{\in}N=\{1,2,3,{\cdots}\}$. In this paper, we obtain sharp results concerning coefficient estimates, distortion theorem and radius of convexity for the class $T^{\alpha}_{\lambda}$(p, A, B). It is further shown that the class $T^{\alpha}_{\lambda}$(p, A, B) is closed under "arithmetic mean" and "convex linear combinations". We also obtain class preserving integral operators of the form $F(z)=\frac{p+c}{z^c}{\int^z_0t^{c-1}}f(t)dt$, c>-p, for the class $T^{\alpha}_{\lambda}$(p, A, B). Conversely when $F(z){\in}T^{\alpha}_{\lambda}$(p, A, B), radius of p valence of f(z) has also determined.

  • PDF

SOME ANALYTIC IRREDUCIBLE PLANE CURVE SINGULARITIES

  • Kang, Chung-Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.367-379
    • /
    • 1996
  • Let $V = {(z, y) : f(z, y) = z^n + Ay^\alpha z^p + y^\beta z^q + y^k = 0}$ and $W = {(z, y) : g(z, y) = z^n + By^\gamma z^s + y^\delta z^t + y^k = 0}$ be germs of analytic irreducible subvarieties of a polydisc near the origin in $C^2$ with n < k and (n, k) = 1 where A and B are complex numbers. Assume that V and W are topologically equivalent near the origin.

  • PDF

AN ENTIRE FUNCTION SHARING A POLYNOMIAL WITH LINEAR DIFFERENTIAL POLYNOMIALS

  • Ghosh, Goutam Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.495-505
    • /
    • 2018
  • The uniqueness problems on entire functions sharing at least two values with their derivatives or linear differential polynomials have been studied and many results on this topic have been obtained. In this paper, we study an entire function f(z) that shares a nonzero polynomial a(z) with $f^{(1)}(z)$, together with its linear differential polynomials of the form: $L=L(f)=a_1(z)f^{(1)}(z)+a_2(z)f^{(2)}(z)+{\cdots}+a_n(z)f^{(n)}(z)$, where the coefficients $a_k(z)(k=1,2,{\ldots},n)$ are rational functions and $a_n(z){\not{\equiv}}0$.

ON UNIVALENT SUBORDINATE FUNCTIONS

  • Park, Suk-Joo
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.103-111
    • /
    • 1996
  • Let $f(z)=z+\alpha_2 z^2$+…+ \alpha_{n}z^n$+… be regular and univalent in $\Delta$ = {z : │z│<1}. In this paper, using the proper subordinate functions, we investigate the some relations between subordinations and conditions of functions belonging to subclasses of univalent functions.

  • PDF

Studies on Proximate Composition, Fatty Acids and Volatile Compounds of Zanthoxylum schinifolium Fruit According to Harvesting Time (산초열매의 채집 시기별 일반성분, 지방산 및 정유성분 조성 변화)

  • Bae, Sung-Mun;Jin, Young-Min;Jeong, Eun-Ho;Kim, Man-Bae;Shin, Hyun-Yul;Ro, Chi-Woong;Lee, Seung-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Biological characteristics of 5 Zanthoxylum schinifolium (Zs) fruits such as Z1 (early August), Z2 (middle August), Z3 (middle September), Z4 (early October) and Z5 (middle October) according to harvesting time were evaluated. As fruits ripened, average weight of Zs increased from 4.8mg (Z1) to 50.7mg (Z5), while moisture contents decreased from 74.6% (Z1) to 55.2% (Z5). Crude fat contents of the fruits during ripening increased from 1% (Z1) to 10.6% (Z5). The major fatty acids in Zs were palmitic (C16:0), palmitoleic (C16:1), oleic (C18:1), and linoleic (C18:2) acids. Linoleic acid (C18:2) was a main fatty acid in Z1 and Z2, whereas oleic acid (C18:1) was found as a main one in the other Zs. The ratio of unsaturated fatty acid to total fatty acids increased from 60% (Z1) to 80% (Z3~Z5) during ripening. Among ripening stages, Z4 had the highest contents of total fatty acids ($3,355{\mu}g/g$) and total unsaturated fatty acids ($2,753{\mu}g/g$). Forty six volatile compounds in Zs were also identified. The major volatile compounds were ${\alpha}-pinene$, ${\beta}-myrcene$, ${\beta}-ocimene$, 2-nonanone, estragole, 2-undecanone, and ${\beta}-caryophyllene$. Major volatile components of Z1 were ${\beta}-ocimene$ (20.8 peak area %) and ${\alpha}-pinene$ (9.7 peak area %). In Z2, estragole (30.1 peak area %) was a main volatile compound, but the contents of ${\alpha}-pinene$ (0.4 peak area %), ${\beta}-myrcene$ (0.3 peak area %), and ${\beta}-ocimene$ (0.6 peak area %) were lower than those in Z1. Especially, estragole used as perfumes and as a food additive for flavor was drastically increased to 91.2 (Z3) and 92% (Z4) as fruits ripened.

SOME RESULTS ON MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

  • Li, Nan;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1095-1113
    • /
    • 2020
  • In this paper, we investigate the transcendental meromorphic solutions for the nonlinear differential equations $f^nf^{(k)}+Q_{d_*}(z,f)=R(z)e^{{\alpha}(z)}$ and fnf(k) + Qd(z, f) = p1(z)eα1(z) + p2(z)eα2(z), where $Q_{d_*}(z,f)$ and Qd(z, f) are differential polynomials in f with small functions as coefficients, of degree d* (≤ n - 1) and d (≤ n - 2) respectively, R, p1, p2 are non-vanishing small functions of f, and α, α1, α2 are nonconstant entire functions. In particular, we give out the conditions for ensuring the existence of these kinds of meromorphic solutions and their possible forms of the above equations.

ON PROPERTIES OF COMPLEX ORDER FOR THE CLASSES OF UNIVALENT FUNCTIONS

  • Park, Suk-Joo
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 1995
  • Let A be the class of univalent functions f(z)=z+${\alpha}$$_2$z$^2$${\alpha}$$_3$z$^3$+…(1.1) which are analytic in the unit disk $\Delta$= {z:│z│<1}. Let S*(p) be the subclass of A composing of functions which are starlike of order $\rho$. A function f(z) belonging to the class A is said to be starlike of order $\rho$ ($\rho$(equation omitted) 0) if and only if z$\^$-l/ f(z) (equation omitted) 0 (z$\in$$\Delta$) and (equation omitted (1.2).(omitted)

  • PDF

ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS WITH REAL COEFFICIENTS

  • Han, Seungwoo;Kim, Seon-Hong;Park, Jeonghun
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • If q(z) is a polynomial of degree n with all zeros in the unit circle, then the self-reciprocal polynomial $q(z)+x^nq(1/z)$ has all its zeros on the unit circle. One might naturally ask: where are the zeros of $q(z)+x^nq(1/z)$ located if q(z) has different zero distribution from the unit circle? In this paper, we study this question when $q(z)=(z-1)^{n-k}(z-1-c_1){\cdots}(z-1-c_k)+(z+1)^{n-k}(z+1+c_1){\cdots}(z+1+c_k)$, where $c_j$ > 0 for each j, and q(z) is a 'zeros dragged' polynomial from $(z-1)^n+(z+1)^n$ whose all zeros lie on the imaginary axis.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.