• Title/Summary/Keyword: $Y_2O_3:Eu^{3+}$ red phosphor

Search Result 86, Processing Time 0.022 seconds

Luminescent Properties of Y2O3:Eu Red Phosphor Particles Prepared by Microwave Synthesis (마이크로웨이브 합성법으로 제조한 Y2O3:Eu 적색 형광체의 발광 특성)

  • Maniquiz, Meriel Chua;Kang, Tae-Won;Ahn, Jin-Han;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.203-208
    • /
    • 2009
  • $Y_2O_3$:Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared $Y_2O_3$:Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at $1200^{\circ}C$. The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of $Y_2O_3$:Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of $Y_2O_3$:Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm.

Luminescence Properties of Red Phosphor Gd2-x-yLixEuyO3 (적색 형광체 Gd2-x-yLixEuyO3의 발광 특성)

  • 조신호;변송호;김동국;박중철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.258-263
    • /
    • 2002
  • We present a new toed phosphor, $Gd_{2-x-y}Li_xEu_yO_3$ with superior luminescent Properties compared to the commercially available red phosphor $Y_2O_3:Eu^{3+}$. The phosphor, with a diameter of about $2\mu\textrm{m}$, consists of the psedospherical particles in a regular array. The photoluminescence measurements as a function of the laser power and the Eu mole fraction were performed at zoom temperature The luminescence intensity linearly increases as both the laser power and the Eu mole fraction Increase. As for the dependence on cathodoluminescence, the incorporation of Eu and Li ions into $Gd_2O_3$ lattice brings about an increase in luminescent efficiency. The highest emission intensity for the phosphor occurs at the applied voltage of 500 V, its value is larger than that of $Y_2O_3:Eu^{3+}$ powder by 70%.

Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property (나노 크기의 Gd2O3:Eu3+ 적색형광체가 코팅된 판상 Mica의 제조 및 형광특성)

  • Ban, Se-Min;Park, Jeong Min;Jung, Kyeong Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kang, Myung Chang;Kim, Dae-Sung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.457-463
    • /
    • 2017
  • Nanosized $Gd_2O_3:Eu^{3+}$ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between $Gd_2O_3:Eu^{3+}$ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged $Gd_2O_3:Eu^{3+}$ and negatively charged mica above pH 6. To prepare $Gd_2O_3:Eu^{3+}$-coated mica ($Gd_2O_3:Eu/mica$), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of $Gd_2O_3:Eu^{3+}$. In spite of the low luminescence of the $Gd_2O_3:Eu/mica$, the luminescent property is recovered after calcination above $600^{\circ}C$ and is enhanced by increasing the $Gd_2O_3:Eu^{3+}$ coating amount. The $Gd_2O_3:Eu/mica$ is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.

Investigation of a New Red-Emitting, Eu3+-Activated MgAl2O4 Phosphor

  • Singh, Vijay;Haque, Masuqul;Kim, Dong-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2477-2480
    • /
    • 2007
  • MgAl2O4:Eu3+ red-light emitting powder phosphor was prepared at temperature as low as 500 oC within a few minutes by using the combustion route. The prepared powder was characterized by X-ray diffraction, scanning electron microscopy and Fourier-transform infrared spectrometry. The luminescence of Eu3+-activated MgAl2O4 shows a strong red emission dominant peak around 611 nm, which can be attributed to the 5D0-7F2 transition of Eu3+ ions from the synthesized phosphor particles under excitation (394 nm). Electron paramagnetic resonance (EPR) measurements at the X-band showed that no signal could be attributed to Eu2+ ions in MgAl2O4.

Luminescence of $Eu^{3+}-doped\;GdCa_4B_3O_{10}$ phosphor under UV and VUV irradiation

  • Oh, Jae-Suk;Kwak, Chung-Heop;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1355-1359
    • /
    • 2006
  • Due to its efficient red emission, $Eu^{3+}$ ion has been doped in various host materials. $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor for red emission has been prepared by solid state reaction. Photoluminescence properties for the phosphor under UV and VUV excitation were investigated. The $GdCa_4B_3O_{10}:Eu^{3+}$ phosphor under both excitation conditions shows typical red emission spectrum centered at 611 nm with several weak peaks due to energy transfer from $^5D_O\;to\;^7F_J(J=1,2,3,4)$ of $Eu^{3+}$ ion. On the other hand, the activator content exhibiting the concentration quenching under UV and VUV irradiation is 10 mole% and 2.5 mole%, respectively.

  • PDF

Photoluminescence of Al2O3:xCr2O3 Solid Solution and Application as the Additive for Improving CRI of Red Phosphor (Al2O3:xCr2O3 고용상의 발광특성과 적색형광체의 연색성 향상을 위한 첨가제로의 응용)

  • Chae, Ki-Woong;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • In this article photoluminescence of the $Al_2O_3:xCr_2O_3$ solid solutions prepared by solid state reaction method are represented. The effect of $Cr_2O_3$-activator concentration and heat treatment time on the PL characteristics have been discussed in conjunction with microstructure of phosphor samples. The $Al_2O_3:xCr_2O_3$ phosphors show the highest PL intensity at x=0.003 mole when the samples are reacted at $1600^{\circ}C$ for 5 h. The PL emission and absorption spectra show the maximum peaks at 698 nm and at 398 nm respectively. The CIE color coordinate is (x=0.646, y=0.316) at 0.003 mole $Cr_2O_3$, which value is very close to the NTSC coordinate of red color. This characteristic feature of $Al_2O_3:xCr_2O_3$ has been applied for an additive to improve the color characteristic of other red phosphor $LiEuW_2O_8$ which has a relatively poor color purity with an emission peak centered at 615 nm and with a CIE coordinate (x=0.530, y=0.280). The $Al_2O_3:0.003Cr_2O_3$ phosphor has been mixed with the $LiEuW_2O_8$ phosphor powder and the PL characteristics and CIE color coordinates are characterized. The $Al_2O_3:xCr_2O_3$ phosphor was found effective for improving the CRI (color rendering index) of $LiEuW_2O_8$ phosphor.

Nano Dispersion of Aggregated Y2O3:Eu Red Phosphor and Photoluminescent Properties of Its Nanosol (응집된 Y2O3:Eu Red 형광체의 나노분산 및 나노졸의 형광특성)

  • Lee, Hyun Jin;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • Nanosized and aggregated $Y_2O_3:Eu$ Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of $Y_2O_3:Eu$ red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated $Y_2O_3:Eu$ Red phosphor under bead mill wet process. The dispersion property of the $Y_2O_3:Eu$ nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size ($D_{50}$) of $Y_2O_3:Eu$ nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of $Y_2O_3:Eu$ nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of $Y_2O_3:Eu$ nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.

Effect of Different Fluxes in Preparation of Y2O3:Eu3+ Red Phosphor Used for Cold Cathode Fluorescence Lamp (냉 음극 형광 램프용 Y2O3:Eu3+ 적색 형광체에 대한 이종 Flux 혼합첨가의 영향)

  • Goo, Ja-In;Kim, Sang-Moon;Shin, Hag-Ki;Hong, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.163-168
    • /
    • 2009
  • $Eu^{3+}$-doped $Y_2O_3$ red phosphor was synthesized in a flux method using the chemicals $Y_2O_3,\;Eu_2O_3,\;H_3BO_3$ and $BaCl_2{\cdot}2H_2O$. The effect of a flux addition on the preparation of $Y_2O_3:Eu_{3+}$ red phosphor used as a cold cathode fluorescence lamp was investigated. $H_3BO_3$ and $BaCl_2{\cdot}2H_2O$ fluxes were used due to their different melting points. The crystallinity, thermal properties, morphology, and emission characteristics were measured using XRD, TG-DTA, SEM, and a photo-excited spectrometer. Under UV excitation of 254 nm, $Eu_2O_3$ 3.7 mol% doped $Y_2O_3$ exhibited a strong narrow-band red emission, peaking at 612 nm. From this result, the phosphor synthesized by firing $Y_2O_3$ with 3.7 mol% of $Eu_2O_3$, 0.25 mol% of $H_3BO_3$ and 0.5 mol% of $BaCl_2{\cdot}2H_2O$ fluxes at $1400^{\circ}C$ for 2 hours had a larger particle size of $4{\mu}m$ on average compared to the phosphor of the $H_3BO_3$ flux alone. In addition, a phosphor synthesized by the two fluxes together had a rounder corner shape, which led to the maximum emission intensity.

Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Jee, Soon-Duk;Kim, Chang-Hae;Lee, Sang-Hyuk;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.