DOI QR코드

DOI QR Code

Effect of Different Fluxes in Preparation of Y2O3:Eu3+ Red Phosphor Used for Cold Cathode Fluorescence Lamp

냉 음극 형광 램프용 Y2O3:Eu3+ 적색 형광체에 대한 이종 Flux 혼합첨가의 영향

  • Goo, Ja-In (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Sang-Moon (Division of Materials Science and Engineering, kumoh National Institute of Technology) ;
  • Shin, Hag-Ki (Department of Applied Chemistry, Kyungnam College University of Information & Technology) ;
  • Hong, Hong-Chae (Division of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (Division of Materials Science and Engineering, Pusan National University)
  • 구자인 (부산대학교 재료공학부) ;
  • 김상문 (금오공과대학교 신소재시스템공학부) ;
  • 신학기 (경남정보대학 신소재 응용화학과) ;
  • 박홍채 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부)
  • Published : 2009.03.27

Abstract

$Eu^{3+}$-doped $Y_2O_3$ red phosphor was synthesized in a flux method using the chemicals $Y_2O_3,\;Eu_2O_3,\;H_3BO_3$ and $BaCl_2{\cdot}2H_2O$. The effect of a flux addition on the preparation of $Y_2O_3:Eu_{3+}$ red phosphor used as a cold cathode fluorescence lamp was investigated. $H_3BO_3$ and $BaCl_2{\cdot}2H_2O$ fluxes were used due to their different melting points. The crystallinity, thermal properties, morphology, and emission characteristics were measured using XRD, TG-DTA, SEM, and a photo-excited spectrometer. Under UV excitation of 254 nm, $Eu_2O_3$ 3.7 mol% doped $Y_2O_3$ exhibited a strong narrow-band red emission, peaking at 612 nm. From this result, the phosphor synthesized by firing $Y_2O_3$ with 3.7 mol% of $Eu_2O_3$, 0.25 mol% of $H_3BO_3$ and 0.5 mol% of $BaCl_2{\cdot}2H_2O$ fluxes at $1400^{\circ}C$ for 2 hours had a larger particle size of $4{\mu}m$ on average compared to the phosphor of the $H_3BO_3$ flux alone. In addition, a phosphor synthesized by the two fluxes together had a rounder corner shape, which led to the maximum emission intensity.

Keywords

References

  1. A. Mored and N. E. Khiati, J. Electrochem. Soc., 140, 2019 (1993) https://doi.org/10.1149/1.2220755
  2. R. P. Pao, J. Electrochem. Soc., 143, 189 (1996) https://doi.org/10.1149/1.1836407
  3. W. C. Chien, J. Cryst. Growth, 290, 554 (2006) https://doi.org/10.1016/j.jcrysgro.2006.01.042
  4. L. Laversenne, C. Goutaudier, Y. Guyot, M. Cohen-Addad and G. Boulon, J. Alloys Compd., 341, 214 (2002) https://doi.org/10.1016/S0925-8388(02)00082-8
  5. A. M. Pires, M. F. Santos, M. R. Davolos and E. B. Stucchi, J. Alloys Compd., 344, 276 (2002) https://doi.org/10.1016/S0925-8388(02)00368-7
  6. M. V. Nazarov, J. H. Kang, D. Y. Jeon, E. J. Popovici and B.S. Tsukerblat, Solid State Commun., 133, 183 (2005) https://doi.org/10.1016/j.ssc.2004.10.021
  7. L. Yang, Y. Tang, X. Chen, Y. Li and X. Cao, Mater. Chem. and Phys., 101, 195 (2007) https://doi.org/10.1016/j.matchemphys.2006.03.006
  8. L. Ozawa, H. Forest, P. M. Jaffe and G. Ban, J. Electrochem. Soc., 118(3), 482 (1971) https://doi.org/10.1149/1.2408087
  9. S. Ekambaram, K. C. Patil and M. Maaza, J. Alloys Compd., 393, 214 (2002)
  10. The Columbia Encylopedia On the Web. Retrieved July 7, 2008 from http://www.encyclopedia.com
  11. H. S. Kang, S. B. Park, H. Y. Koo and Y. C. Kang, J. Kor. Chem. Eng. Res., 44(6), 609 (2006)
  12. H. S. Roh, Y. C. Kang and S. J. Park, J. Kor. Chem. Eng. Res., 39(2), 195 (2001)

Cited by

  1. Effect of calcination temperature on structural and optical properties of europium (III) doped SrO–Y2O3 phosphor vol.26, pp.5, 2015, https://doi.org/10.1007/s10854-015-2754-4