DOI QR코드

DOI QR Code

Luminescent Properties of Y2O3:Eu Red Phosphor Particles Prepared by Microwave Synthesis

마이크로웨이브 합성법으로 제조한 Y2O3:Eu 적색 형광체의 발광 특성

  • Maniquiz, Meriel Chua (Department of Chemical Engineering, Kongju National University) ;
  • Kang, Tae-Won (Department of Chemical Engineering, Kongju National University) ;
  • Ahn, Jin-Han (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong-Youl (Department of Chemical Engineering, Kongju National University)
  • Published : 2009.06.28

Abstract

$Y_2O_3$:Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared $Y_2O_3$:Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at $1200^{\circ}C$. The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of $Y_2O_3$:Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of $Y_2O_3$:Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm.

Keywords

References

  1. C. R. Ronda, H. Justel and H. Nikol: J. Alloys Compd., 275-277 (1998) 669 https://doi.org/10.1016/S0925-8388(98)00416-2
  2. J. A. Nelson, E. L. Brant and M. J. Wagner: Chem. Mater., 15 (2003) 688 https://doi.org/10.1021/cm0207853
  3. L. E. Shea, J. Mackittrick and M. L. F. Philips: J. Electrochem. Soc., 145 (1998) 3165 https://doi.org/10.1149/1.1838781
  4. C. R. Ronda: J. Lumin., 72-74 (1997) 49 https://doi.org/10.1016/S0022-2313(96)00374-2
  5. H. Kobayashi, K. Ohmi, K. Ichino and T. Kunimoto: Phys. Stat. Sol. (a), 205 (2008) 11 https://doi.org/10.1002/pssa.200776701
  6. Y. C. Kang, J. R. Sohn, H. S. Yoon, K. Y. Jung and H. D. Park: J. Electrochem. Soc., 150 (2003) H38 https://doi.org/10.1149/1.1534099
  7. K. Y. Jung, C. H. Lee and Y. C. Kang: Mater. Lett., 59 (2005) 2451 https://doi.org/10.1016/j.matlet.2005.03.017
  8. E. J. Bosze, J. McKittrick and G. A. Hirata: Mater. Sci. Eng. B, 97 (2003) 265 https://doi.org/10.1016/S0921-5107(02)00598-6
  9. Y. Sun, L. Qi, M. Lee, B. I. Lee, W. D. Samuels and G. J. Exarhos: J. Lumin., 109 (2004) 85 https://doi.org/10.1016/j.jlumin.2004.01.085
  10. I. W. Lenggoro, C. Panatarani and K. Okuyama: Mater. Sci. Eng. B, 113 (2004) 60 https://doi.org/10.1016/j.mseb.2004.06.020
  11. Z. Yongqing, Y. Zihua, D. Shiwen, Q. Mande and Z. Jian: Mater. Lett., 57 (2003) 2901 https://doi.org/10.1016/S0167-577X(02)01394-0
  12. J. Zhang, Z. Zhang, Z. Tang, Y. Lin and Z. Zheng: J. Mater. Process. Technol., 121 (2002) 265 https://doi.org/10.1016/S0924-0136(01)01263-8
  13. T. Hirai, T. Hirano and I. Komasawa: J. Colloid Interface Sci., 253 (2002) 62 https://doi.org/10.1006/jcis.2002.8534
  14. S. Erdei, F. W. Ainger, D. Ravichandran, W. B. White and L. E. Cross: Mater. Lett., 30 (1997) 389 https://doi.org/10.1016/S0167-577X(96)00230-3
  15. Milosevice, L. Mancic, B. Jordovic, R. Maric, S. Ohara and T. Fukui: J. Mater. Process. Technol., 143- 144 (2003) 501 https://doi.org/10.1016/S0924-0136(03)00305-4
  16. G. Saskia: Chem. Soc. Rev., 26 (1997) 233 https://doi.org/10.1039/cs9972600233
  17. K. Uematsu, K. Toda and M. Sato: J. Alloys Comp., 389 (2005) 209 https://doi.org/10.1016/j.jallcom.2004.05.083
  18. Z. Chen, Y. Yan, J. Liu, H. Wen, J. Zao, D. Liu, H. Tian, C. Zhang and S. Li: J. Alloys Comp., 473 (2009) L13 https://doi.org/10.1016/j.jallcom.2008.05.060
  19. S.-H. Kim, S. Y. Lee, G.-R. Yi, D. J. Pine and S.-M. Yang, J. Am. Chem. Soc., 128 (2006) 10897 https://doi.org/10.1021/ja063528y