• Title/Summary/Keyword: $TiO_2$ Films

Search Result 1,677, Processing Time 0.03 seconds

High Efficiency Dye-Sensitized Solar Cells: From Glass to Plastic Substrate

  • Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.294-294
    • /
    • 2010
  • Over the last decade, dye-sensitized solar cell (DSSC) has attracted much attention due to the high solar-to-electricity conversion efficiency up to 10% as well as low cost compared with p-n junction photovoltaic devices. DSSC is composed of mesoporous TiO2 nanoparticle electrodes coated with photo-sensitized dye, the redox electrolyte and the metal counter electrode. The performances of DSSC are dependent on constituent materials and interface as well as device structure. Replacing the heavy glass substrate with plastic materials is crucial to enlarge DSSC applications for the competition with inorganic based thin film photovoltaic devices. One of the biggest problems with plastic substrates is their low-temperature tolerance, which makes sintering of the photoelectrode films impossible. Therefore, the most important step toward the low-temperature DSSC fabrication is how to enhance interparticle connection at the temperature lower than $150^{\circ}C$. In this talk, the key issues for high efficiency plastic solar cells will be discussed, and several strategies for the improvement of interconnection of nanoparticles and bendability will also be proposed.

  • PDF

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

A Study on the Switching Characteristcs of PLT(10) Thin Films (PLT(10) 박막의 Switching 특성에 관한 연구)

  • Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.63-70
    • /
    • 1999
  • A PLT(10) thin film has been deposited on $Pt/TiO_2/SiO_2/Si$ substrate by sol-gel method, and its switching characteristics have been investigated with various top electrode areas, input pulse voltages and loan resistances. As the external input pulse voltage increases from 2V to 5V, the switching time decreases from $0.49{\mu}s$ to $0.12{\mu}s$. The activation energy ($E_a$) obtained from the relations between the switching time and the applied pulse voltage is evaluated as 209kV/cm. The switched charge densities at 5V obtained from the hysteresis loop and the polarization switching are $11.69{\mu}C/cm^2$ and $13.02{\mu}C/cm^2$, respectively, which agree relatively well with each other and show the difference of 10%. When the top electrode area increases from TEX>$3.14{\times}10^{-4}cm^2$ to $5.03{\times}10^{-3}cm^2$ and the load resistance increases from 50${\Omega}$ to 3.3$k{\Omega}$, the switching time increases from $0.12{\mu}s$ to $1.88{\mu}s$ and from $0.12{\mu}s$ to $9.7{\mu}s$, respectively. These switching characteristics indicate that PLT(10) thin film can be well applied in nonvolatile memory devices.

  • PDF

Thickness Dependence of Orientation, Longitudinal Piezoelectric and Electrical Properties of PZT Films Deposited by Using Sol-gel Method (솔젤법에 의해 제조한 PZT(52/48) 막의 두께에 따른 우선배향성의 변화 및 이에 따른 압전 및 전기적 물성의 변화 평가)

  • Lee, Jeong-Hoon;Kim, Tae-Song;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.942-947
    • /
    • 2001
  • Thickness dependence of orientation on piezoelectric and electrical properties was investigated by PZT (52/48) films by diol based sol-gel method. The thickness of each layer by spinning at one time was $0.2{\mu}m$ and crack-free films could be successfully deposited on 4 inches Pt/Ti/$SiO_2$/Si substrates by 0.5 mol solutions in the range from $0.2{\mu}m$ to $3.8{\mu}m$. Excellent P-E hysteresis curves were achieved, which were attributed to the well-densified PZT films and columnar grain without pores or any defects between interlayers. The (111) preferred orientation of films were shown in the range of thickness below $1{\mu}m$. As the thickness increased, the (111) preferred orientation disappeared from $1{\mu}m$ to $3{\mu}m$ region, and the orientation of films became random above $3{\mu}m$. Dielectric constants and longitudinal piezoelectric coefficient, $d_{33}$, measured by pneumatic method were saturated around the value of about 1400 and 300 pC/N respectively above the thickness of $1{\mu}m$.

  • PDF

Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films (SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Jo, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.723-727
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin film of $1000{\AA}$ was pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $3000{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800^{\circ}C$ in air, respectively The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was no difference in the crystal structure with heat-treatment temperature, but the electric properties depended on the heating temperature and was the best at $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15{\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1075, respectively.

  • PDF

The Study on the Surface Reaction of $SrBi_{2}Ta_{2}O_{9}$ Film by Magnetically Enhanced Inductively Coupled Plasma (MEICP 식각에 의한 SBT 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • Recently, SrBi$_{2}$Ta$_{2}$ $O_{9}$(SBT) and Pb(Zr,Ti) $O_{3}$(PZT) were much attracted as materials of capacitor for ferroelectric random access memory(FRAM) with higher read/ write speed, lower power consumption and nonvolartility. SBT thin film has appeared as the most prominent fatigue free and low operation voltage. To highly integrate FRAM, SBT thin film has to be etched. A lot of papers have been reported over growth of SBT thin film and its characteristics. However, there are few reports about etching SBT thin film owing to difficult of etching ferroelectric materials. SBT thin film was etched in CF$_{4}$Ar plasma using magnetically enhanced inductively coupled plasma (MEICP) system. In order to investigate the chemical reaction on the etched surface of SBT thin films, X-ray Photoelecton spectrosocpy (XPS) and Secondary ion mass spectroscopy(SIMS) was performed.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

A study on Fabrication of Ferroelectric SST Thin Films by Liquid Delivery MOCVD Process (Liquid Delivery MOCVD공정을 이용한 강유전체 SBT 박막의 제조기술에 관한 연구)

  • Kang, Dong-Kyun;Paik, Seung-Kyu;Kim, Hyoeng-Ki;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.111-115
    • /
    • 2003
  • 200nm 정도의 두께를 가진 SBT 박막이 liquid delivery MOCVD 공정에 의해 (111) oriented Pt/Ti/$SiO_2$/Si 기판 위에 증착되었다 이 실험에서는 $Sr(TMHD)_2$tetraglyme, $Bi(ph)_3$ 그리고 $Ta(O^iPr)_4$(TMHD)를 출발 물질로 사용하였다. Sr 출발 물질의 열적 안정화를 위해서 adduct로 tetraglyme를 사용하여 실험하였고 유기 용매로는 n-butyl acetate를 사용하였다 Substrate temperature와 reactor pressure는 각각 $570^{\circ}C$와 5Torr로 유지시켰다. 또한 vaporizer의 용도는 $190-200^{\circ}C$, 그리고 delivery line 의 온도는 vaporizer 보다 높게 유지 $(220-230^{\circ}C)$하여 출발 용액을 분당 0.1ml로 50분간 주입하였다. 수송가스로 Ar, 산화제로 $O_2$ 가스를 사용하였다. 제조한 SBT 박막은 $750^{\circ}C$에서 열처리한 후 인가전압 3V와 5V에서 $2P_r$값이 각각 6.47, $8.98{\mu}C/cm^2$이었으며, $2E_c$값은 인가전압 3V와 5V에서 각각 2.05, 2.31V이었다 그리고 $800^{\circ}C$에서는$750^{\circ}C$에서 열처리한 SBT 박막보다 다소 우수한 이력특성을 나타내어 $2P_r$ 값은 인가전압 3V와 5V에서 각각 7.59, $10.18{\mu}C/cm^2$ 이었으며, $2E_c$값은 인가 전압 3V와 5V에서 각각 2.00, 2.21V 이었다.

  • PDF

Repair of Plasma Damaged Low-k Film in Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 플라즈마 손상된 다공성 저유전 막질의 복원)

  • Jung, Jae-Mok;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Repair reaction of plasma damaged porous methyl doped SiOCH films was carried out with silylation agents dissolved in supercritical carbon dioxide ($scCO_2$) at various reaction time, pressure, and temperature. While a decrease in the characteristic bands at $3150{\sim}3560cm^{-1}$ was detectable, the difference of methyl peaks was not identified apparently in the FT-IR spectra. The surface hydrophobicity was rapidly recovered by the silylation. In order to induce effective repair in bulk phase, the wafer was heat treated before reaction under vacuum or ambient condition. The contact angle was slightly increased after the treatment and completely recovered after the subsequent silylation. Methyl groups were decreased after the plasma damage, but their recovery was not identified apparently from the FT-IR, spectroscopic ellipsometry, and secondary ion mass spectroscopy analyses. Furthermore, Ti evaporator was performed in a vacuum chamber to evaluate the pore sealing effect. The GDS analysis revealed that the open pores in the plasma damaged films were efficiently sealed with the silylation in $scCO_2$.

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes