• Title/Summary/Keyword: $TNF-{\alpha}$ release

Search Result 295, Processing Time 0.021 seconds

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells (인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과)

  • Keum, Bo Ram;Hyeon, Jin Yi;Choe, So Hui;Jin, Ji Young;Jeong, Ji Woo;Lim, Jong Min;Park, Dong Chan;Cho, Kwang Keun;Choi, Eun Young;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.

Effect of Schisandrae Chinensis Fructus on Keratinocyte Damage by UV Irradiation (오미자(五味子)가 자외선유발 피부각질세포 손상에 미치는 효과)

  • Park, Hyung-Hoon;Lee, Jang-Suk;Yun, Hyuk;Hwang, Gwi-Seo;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.330-337
    • /
    • 2012
  • This study was performed to assess the Effect of SCF(Schisandrae Chinensis Fructus) on Keratinocyte Damage by UV irradiation. The effect of SCF were determined in UV irradiated HaCaT. We measured LDH release and NO release from HaCaT to elucidate the effect of SCF. And iNOS, TNF-${\alpha}$, COX-2, Bax, Bcl-2, Bcl-xL, c-jun, c-fos gene expression were determined in HaCat using real time PCR method. The results are as follows. SCF inhibited LDH-release, NO production in UV irradiated HaCaT. SCF increased the gene expression Bax, Bcl-2 and Bcl-xL protein in UV irradiated HaCaT. SCF suppressed the gene expression TNF-${\alpha}$ in UV irradiated HaCaT. SCF suppressed the gene expression iNOS, c-fos, and c-jun in UV irradiated HaCaT. SCF not affected the suppression of the gene expression COX-2 in UV irradiated HaCaT. The study showed SCF inhibited the cell damage in UV irradiated HaCaT.

Cytokines Stimulate Lung Epithelial Cells to Release Nitric Oxide

  • Robbins, Richard A.;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.447-454
    • /
    • 1995
  • Cytokine release from alveolar macrophages and subsequent interaction of these cytokines with the bronchial epithelium can induce epithelial cells to release inflammatory mediators. Nitric oxide(NO), a highly reactive gas formed from arginine by nitric oxide synthase(NOS), is known to be involved in inflammation and edema formation, and the inducible form of NOS(iNOS) can be increased by cytokines. In this context, we hypothesized that lung epithelial cells could be stimulated by cytokines released by alveolar macrophages to express iNOS. To test this hypothesis, the murine lung epithelial cell line, LA-4, or the human lung epithelial cell line, A549, were stimulated with culture supernatant fluids from alveolar macrophages. NO production was assessed by evaluating the culture supernatant fluids for nitrite and nitrate, the stable end products of NO. Both murine and human cell culture supernatant fluids demonstrated an increase in nitrite and nitrate which were time- and dose-dependent and attenuated by $TNF{\alpha}$ and IL-$1{\beta}$ antibodies(p<0.05, all comparisons). Consistent with these observations, cytomix a combination of $TNF{\alpha}$, IL-$1{\beta}$, and $\gamma$-interferon, stimulated the lung epithelial cell lines as well as primary cultures of human bronchial epithelial cells to increase their NO production as evidenced by an increase in nitrite and nitrate in their culture supernatant fluids, an increase in the iNOS staining by immunocytochemistry, and an increase in iNOS mRNA by Northern blottin(p<0.05, all comparisons). The cytokine effects on iNOS were all attenuated by dexamethasone. To determine if these in vitro observations are reflected in vivo, exhaled NO was measured and found to be increased in asthmatics not receiving corticosteroids. These data demonstrate that alveolar macrophage derived cytokines increase iNOS expression in lung epithelial cells and that these in vitro observations are mirrored by increased exhaled NO levels in asthmatics. Increased NO in the lung may contribute to edema formation and airway narrowing.

  • PDF

Effect of Samul-Tang on the Allergic Inflammatory Response (사물탕(四物湯)이 알러지 염증반응에 미치는 영향)

  • Kim, Eun-Kyoung;Kim, Eun-Young;Lee, Hyun-Sam;Jung, Hyuk-Sang;Park, Seong-Kyu;Sohn, Young-Joo;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.617-625
    • /
    • 2007
  • Samul-Tang (SMT) has been used for nourishing of the blood, hematopoiesis as a herbal medicine history. The purpose of this study is to find out anti-allergic inflammatory reaction of SMT. To clarify the mechanism, the effect of SMT on vascular permeability of rat cutaneous tissue and histamine and cytokines (IL-6, IL-8, TNF-${\alpha}$) release from mast cells were observed. The results are the pretreatment with SMT significantly decreased the compound 48/80-induced degranulation and histamine release from RPMC, SMT also inhibited the anti-DNP lgE-induced increment of vascular permeability of rat cutaneous tissue. SMT significantly reduced the PMA plus A23187-induced increment of expression of IL-6, IL-8, and TNF-${\alpha}$ in HMC-1 Cell. The Present study provide evidence that SMT inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic effect of SMT suggests a possible therapeutic application of this agent in inflammatory allergic diseases.

Role of Growth Factors and Cytokines on Bleomycin Induced Pulmonary Fibrosis (Bleomycin 유도 폐 섬유화에 있어서 성장인자 및 Cytokine의 역할)

  • Lee, Yong-Hee;Jung, Soon-Hee;Ahn, Chul-Min;Kim, Sung-Kyu;Cho, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.871-888
    • /
    • 1997
  • Background : It is now thought that the earliest manifestation of idiopathic pulmonary fibrosis is alveolitis, that is, an accumulation of inflammatory and immune effector cells within alveolar walls and spaces. Inflammatory cells including alveolar macrophages and resident normal pulmonary tissue cells participate through the release of many variable mediators such as inflammatory growth factors and cytokines, which contribute to tissue damage and finally cause chronic pulmonary inflammation and fibrosis. This study was performed to investigate the source and distribution pattern of transforming growth factor-${\beta}_1$(TGF-${\beta}_1$), platelet derived growth factor(PDGF), basic fibroblast growth factor(bFGF), interleukin 1(IL-1), interleukin 6(IL-6), tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and the role of these mediators on bleomycin(BLM)-induced pulmonary injury and fibrosis in rats. Method : Wistar rats were divided into three groups(control group, BLM treated group, BLM and vitamine E treated group). Animals were sacrificed periodically at 1, 2, 3, 4, 5, 7, 14, 21, 28 days after saline or BLM administration. The effects were compared to the results of bronchoalveolar lavage fluid analysis, light microscopic findings, immunohistochemical stains for six different mediators(TGF-${\beta}_1$, PDGF, bFGF, IL-1, IL-6 and TNF-$\alpha$) and mRNA in situ hybridization for TGF-${\beta}_1$. Results : IL-1 and IL-6 are maximally expressed at postbleomycin 1~7th day which are mainly produced by neutrophils and bronchiolar epithelium. It is thought that they induce recruitment of inflammatory cells at the injury site. The expression of IL-1 and IL-6 at the bronchiolar epithelium within 7th day is an indirect evidence of contribution of bronchiolar epithelial cells to promote and maintain the inflammatory and immune responses adjacent to the airways. TNF-$\alpha$ is mainly produced by neutrophils and bronchiolar epithelial cells during 1~5th day, alveolar macrophages during 7~28th day. At the earlier period, TNF-$\alpha$ causes recruitment of inflammatory cells at the injury site and later stimulates pulmonary fibrosis. The main secreting cells of TGF-${\beta}_1$ are alveolar macrophages and bronchiolar epithelium and the target is pulmonary fibroblasts and extracellular matrix. TGF-${\beta}_1$ and PDGF stimulate proliferation of pulmonary fibroblasts and TGF-${\beta}_1$ and bFGF incite the fibroblasts to produce extracellular matrix. The vitamine E and BLM treated group shows few positive cells(p<0.05). Conclusion : After endothelial and epithelial injury, the neutrophils and bronchiolar epithelium secrete IL-1, IL-6, TNF-$\alpha$ which induce infiltration of many neutrophils. It is thought that variable enzymes and $O_2$ radicals released by these neutrophils cause destruction of normal lung architecture and progression of pulmonary fibrosis. At the 7~28th day, TGF-${\beta}_1$, PDGF, bFGF, TNF-$\alpha$ secreted by alveolar macrophages sting pulmonary fibroblasts into proliferating with increased production of extracellular matrix and finally, they make progression of pulmonary fibrosis. TNF-$\alpha$ compares quite important with TGF-${\beta}_1$ to cause pulmonary fibrosis. Vitamine E seems to decrease the extent of BLM induced pulmonary fibrosis.

  • PDF

The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage

  • Jo, Wol-Soon;Choi, Yoo-Jin;Kim, Hyoun-Ji;Lee, Jae-Yun;Nam, Byung-Hyouk;Lee, Jae-Dong;Lee, Sang-Wha;Seo, Su-Yeong;Jeong, Min-Ho
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-$\alpha$ and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators.

Inhibition of LPS-induced iNOS, COX-2 Expression and Cytokines Production by Fupenjic Acid in Macrophage Cells (Fupenjic Acid의 대식세포에서 LPS에 의해 유도되는 iNOS와 COX-2 발현 및 Cytokine들의 생성 저해 효과)

  • Yun, Chang-Hyeon;Shin, Ji-Sun;Park, Hee-Juhn;Park, Jong-Hee;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • In this study, we investigated the anti-inflammatory effects of fupenjic acid (FA) isolated from the Potentilla discolor in both RAW 264.7 and mouse primary peritoneal macrophage cells. FA pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2(PGE_2)$ productions in the lipopolysaccharide (LPS)-induced RAW 264.7 and mouse primary peritoneal macrophage cells. Consistent with these observations, Western blot and RT-PCR analyses revealed that FA inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels. In addition, FA reduced the release of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-6 (IL-6). These results suggest that the down regulation of iNOS and COX-2 expression and TNF-$\alpha$ and IL-6 production by fupenjic acid are responsible for its anti-inflammatory effects.

Mangiferin isolated from the rhizome of Anemarrhena asphodeloides inhibits the LPS-induced nitric oxide and prostagladin $E_2$ via the $NF-{\kappa}B$ inactivation in inflammatory macrophages

  • Shin, Ji-Sun;Noh, Young-Su;Kim, Dong-Hyun;Cho, Young-Wuk;Lee, Kyung-Tae
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.206-213
    • /
    • 2008
  • This study was designed to investigate the anti-inflammatory effects of mangiferin isolated from the rhizome of Anemarrhena asphodeloides, a natural polyphenol, on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Mangiferin dose-dependently inhibited LPS-induced nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ productions in RAW 264.7 macrophages and peritoneal macrophages isolated from C57BL/6 mice. Consistent with these data, mangiferin suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner, as determined by Western blotting and RT-PCR, respectively. In addition, the release of tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) and interleukin-6 (IL-6), and the mRNA expression levels of these cytokines were reduced by mangiferin in a dose-dependent manner. Moreover, mangiferin effectively inhibited the transcriptional activation of nuclear factor-kappa B $(NF-{\kappa}B)$. These results suggest that the anti-inflammatory properties of mangiferin are caused by iNOS, COX-2, $TNF-{\alpha}$, and IL-6 down-regulation due to $(NF-{\kappa}B)$ inhibition in RAW 264.7 macrophages.

Anti-neuroinflammatory Effect of Plantago Major var. Japonica in BV-2 Microglial Cells

  • Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.411-415
    • /
    • 2017
  • To evaluate the protective effects of Plantago Major extract (PME) in stimulated BV-2 microglial cells and its anti-oxidant properties, cell viability assessment was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) was used to activate BV-2 microglia. Nitric oxide (NO) levels were measured using Griess assay. Tumor necrosis factor-alpha (TNF-${\alpha}$) production was evaluated by enzyme-linked immunosorbent assay (ELISA). Antioxidant properties were evaluated by 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. LPS-activated excessive release of NO in BV-2 cells was significantly inhibited by PME (P < 0.001 at $100{\mu}g/mL$). PME also scavenged DPPH radicals in a dose-dependent manner (P < 0.05 at $10{\mu}g/mL$ and P < 0.001 at $20{\sim}200{\mu}g/mL$). These results indicate that PME attenuated neuroinflammatory responses in LPS-activated BV-2 microglia by inhibiting excessive production of pro-inflammatory mediators such as NO and TNF-${\alpha}$. The anti-neuroinflammatory potential of PME may be related to its strong antioxidant properties.

The House dust Mite Allergen, Dermatophagoides pteronyssinus Regulates the Constitutive Apoptosis and Cytokine Secretion of Human Eosinophils

  • Kang, Bo Kyeong;Kim, A Min;Park, Sun Hwa;Lee, Eun Ji;Kim, Jung Seok;Kim, Eun Jeong;Baek, Seung Yeop;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.39-42
    • /
    • 2014
  • Asthma is an allergic inflammation and house dust mite (HDM) is a major allergen to induce asthma pathogenesis. Regulation of eosinophil apoptosis is an essential immune process and its dysregulation is implicated in asthma. In the present study, we examined the effects of HDM on spontaneous apoptosis of asthmatic eosinophils and on cytokine secretion in eosinophils of normal subjects including non-atopic and atopic normal. Extract of Dermatophagoides pteronissinus (DP) inhibited eosinophil apoptosis in a time-dependent manner. DP increased the secretion of G-CSF, GM-SCF, and IL-4, which is involved in suppression of eosinophil apoptosis, but IL-5 expression was not altered after DP stimulation. DP also elevated the release of IL-6, IL-8, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and CCL2, which are anti-apoptotic or survival factors. The secretion of G-CSF, GM-CSF, IL-6, IL-8, and TNF-${\alpha}$ due to DP is higher in atopic normal than that in non-atopic normal. In conclusion, DP increases the survival of eosinophils and its mechanism may be associated with cytokine release. These findings may enable elucidation of asthma pathogenesis induced by HDM.