• Title/Summary/Keyword: $TGF-{\beta}$/Smad

Search Result 84, Processing Time 0.018 seconds

Extracellular Vesicles Derived from Adipose Stem Cells Alleviate Systemic Sclerosis by Inhibiting TGF-β Pathway

  • Eunae Kim;Hark Kyun Kim;Jae Hoon Sul;Jeongmi Lee;Seung Hyun Baek;Yoonsuk Cho;Jihoon Han;Junsik Kim;Sunyoung Park;Jae Hyung Park;Yong Woo Cho;Dong-Gyu Jo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.432-441
    • /
    • 2024
  • Systemic sclerosis is an autoimmune disease characterized by inflammatory reactions and fibrosis. Myofibroblasts are considered therapeutic targets for preventing and reversing the pathogenesis of fibrosis in systemic sclerosis. Although the mechanisms that differentiate into myofibroblasts are diverse, transforming growth factor β (TGF-β) is known to be a key mediator of fibrosis in systemic sclerosis. This study investigated the effects of extracellular vesicles derived from human adipose stem cells (ASC-EVs) in an in vivo systemic sclerosis model and in vitro TGF-β1-induced dermal fibroblasts. The therapeutic effects of ASC-EVs on the in vivo systemic sclerosis model were evaluated based on dermal thickness and the number of α-smooth muscle actin (α-SMA)-expressing cells using hematoxylin and eosin staining and immunohistochemistry. Administration of ASC-EVs decreased both the dermal thickness and α-SMA expressing cell number as well as the mRNA levels of fibrotic genes, such as Acta2, Ccn2, Col1a1 and Comp. Additionally, we discovered that ASC-EVs can decrease the expression of α-SMA and CTGF and suppress the TGF-β pathway by inhibiting the activation of SMAD2 in dermal fibroblasts induced by TGF-β1. Finally, TGF-β1-induced dermal fibroblasts underwent selective death through ASC-EVs treatment. These results indicate that ASC-EVs could provide a therapeutic approach for preventing and reversing systemic sclerosis.

Lack of Influence of the SMAD7 Gene rs2337107 Polymorphism on Risk of Colorectal Cancer in an Iranian Population

  • Akbari, Zahra;Safari-Alighiarloo, Nahid;Haghighi, Mahdi Montazer;Vahedi, Mohsen;Mirtalebi, Hanieh;Azimzadeh, Pedram;Milanizadeh, Saman;Shemirani, Atena Irani;Nazemalhosseini-Mojarad, Ehsan;Aghdaei, Hamid Asadzadeh;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4437-4441
    • /
    • 2014
  • SMAD7 has been identified as a functional candidate gene for colorectal cancer (CRC). SMAD7 protein is a known antagonist of the transforming growth factor beta ($TGF-{\beta}$) signaling pathway which is involved in tumorigenesis. Polymorphisms in SMAD7 may thus alter cancer risk. The aim of this study was to investigate the influence of a SMAD7 gene polymorphism (rs2337107) on risk of CRC and clinicopathological features in an Iranian population. In total, 210 subjects including 105 patients with colorectal cancer and 105 healthy controls were recruited in our study. All samples were genotyped by TaqMan assay via an ABI 7500 Real Time PCR System (Applied Biosystems) with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of colorectal cancer and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs2337107and the risk of colorectal cancer. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). Although there was not any association between genotypes and disorder, CT was the most common genotype in this population. This genotype prevalence was also higher in the patients with well grade (54.9%) and colon (72.0%) tumors. Our results provide the first evidence that this polymorphism is not a potential contributor to the risk of colorectal cancer and clinicopathological features in an Iranian population, and suggests the need of a large-scale case-control study to validate our results.

Efficacy of flavanone as a treatment for pulmonary fibrosis (Flavanone의 폐섬유증 치료물질로의 유용성)

  • Hee Young Kim;Hyerin Jeong;Young Mee Kim;Moonjae Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.357-365
    • /
    • 2022
  • We examined the lung anti-fibrotic properties of flavanones and flavones, which are flavonoid compounds, in bleomycin- and TGF-β1-stimulated A549 cells. Taken together, treatment with Bleomycin and TGF-β1 increased intracellular ROS by increasing the expression of various NOX families in A549 cells; further, the increased ROS levels resulted in increased fibrosis markers and induced pulmonary fibrosis. Flavonoid treatment has been demonstrated to alleviate or inhibit pulmonary fibrosis by modulating Smad-dependent and -non-dependent TGF-β mechanisms by modulating intracellular NOX expression.

Inhibition Effects of Lamellarin D on Human Leukemia K562 Cell Proliferation and Underlying Mechanisms

  • Zhang, Nan;Wang, Dong;Zhu, Yu;Wang, Jian;Lin, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9915-9919
    • /
    • 2014
  • Lamellarin D (LamD) is a marine alkaloid with a pronounced cytotoxicity against a large panel of cancer cells, affecting cell growth and inducing apoptosis. However, the molecular mechanisms of action of this compound are poorly understood. In this study, the anticancer efficacy of LamD was investigated in human leukemia K562 cells. The results showed suppressed cell proliferation and induction of G0/G1-phase arrest,while expression of CDK1, and activity of smad3 and smad5 were reduced, but that of p27, p53 and STGC3 was increased. LamD induced cell apoptosis through activation of caspases-8/-3, inhibition of survivin and Bcl-2, suggesting that this compound may also act through a caspase-independent pathway. Moreover, LamD inhibited the secretion of TGF-${\beta}$, IL-$1{\beta}$, IL-6, IL-8 and other inflammatory cytokines and the transcriptional activity of transcription factor NF-${\kappa}B$ in human leukemia K562 cells.Taken together, our results suggest that LamD-mediated inhibition of leukemia cell proliferation may be related to the induction of apoptosis and the regulation of cell cycle, tumor-related gene expression and cytokine expression, which may provide a new way of thinking for the treatment leukemia.

Intronic Polymorphisms of the SMAD7 Gene in Association with Colorectal Cancer

  • Damavand, Behzad;Derakhshani, Shaghayegh;Saeedi, Nastaran;Mohebbi, Seyed Reza;Milanizadeh, Saman;Azimzadeh, Pedram;Aghdaie, Hamid Asadzadeh;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • Based on genome-wide association studies (GWAS) a linkage between several variants such as single nucleotide polymorphisms (SNPs) in intron 3 of SMAD7 (mothers against decapentaplegic homolog7) were, rs12953717, rs4464148 and rs4939827 has been noted for susceptibility to colorectal cancer (CRC). In this study we investigated the relationship of rs12953717 and rs4464148 with risk of CRC among 487 Iranian individuals based on a case-control study. Genotyping of SNPs was performed by PCR-RFLP and for confirming the outcomes, 10% of genotyping cases were sequenced with RFLP. Comparing the case and control group, we have found significant association between the rs4464148 SNP and lower risk of CRC. The AG genotype showed decreased risk with and odds ratio of 0.635 (adjusted OR=0.635, 95% CI: 0.417-0.967, p=0.034). There was no significant difference in the distribution of SMAD7 gene rs12953717 TT genotype between two groups of the population evaluated (adjusted OR=1.604, 95% CI: 0.978-2.633, p=0.061). On the other hand, rs12953717 T allele showed a statistically significant association with CRC risk (adjusted OR=1.339, 95% CI: 1.017-1.764, p=0.037). In conclusion, we found a significant association between CRC risk and the rs4464148 AG genotype. Furthermore, the rs12953717 T allele may act as a risk factor. This association may be caused by alternative splicing of pre mRNA. Although we observed a strong association with rs4464148 GG genotype in affected women, we did not detect the same association in CRC male patients.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Effects of compound traditional Astragalus and Salvia Miltiorrhiza extract on acute and chronic hepatic injury

  • Zhang, Xiaoxiang;Yang, Yan;Liu, Xin;Wu, Chao;Chen, Minzhu
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.15.1-15.5
    • /
    • 2013
  • Previous reports showed that Compound Astragalus and Salvia miltiorrhiza extract (CASE), which was mainly composed of astragalosides, astragalus polysaccharide and salvianolic acids, inhibited hepatic fibrosis by mediating transforming growth factor-${\beta}$ (TGF-${\beta}$)/Smad signaling. Our aim was to examine the effects of CASE on D-galactosamine (D-GalN) treated liver injury in mice and carbon tetrachloride ($CCl_4$)-induced liver fibrosis in rats. CASE was administered to mice with D-GalN-induced liver injury and to rats with $CCl_4$-induced liver fibrosis, respectively. Liver injury was routinely evaluated by relative liver weight, serum levels of ALT, AST, hyaluronic acid (HA), hepatic malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, hydroxyproline (HYP) and histopathologic changes. Treatment of mice with CASE (60, 120, and 240 mg/kg, ig) significantly lowered ALT, relative liver weight, and MDA levels when compared with D-GalN treated mice. CASE (120, 240 mg/kg) significantly lowered ALT, AST, HA, HYP, and MDA levels against $CCl_4$ treated rats. Decreased SOD level was reversed with CASE treatment. Upon histopathological examination, CASE treatment had significantly inhibitory effect on the progression of hepatic fibrosis in rats. These results indicate that CASE might be effective in treatment and prevention of acute and chronic hepatic injury due to its antioxidant activity.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma

  • Yang, Lishi;Li, Junyang;Fu, Shaozhi;Ren, Peirong;Tang, Juan;Wang, Na;Shi, Xiangxiang;Wu, Jingbo;Lin, Sheng
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.321-332
    • /
    • 2019
  • The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-${\beta}$ (TGF-${\beta}$)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.