DOI QR코드

DOI QR Code

Extracellular Vesicles Derived from Adipose Stem Cells Alleviate Systemic Sclerosis by Inhibiting TGF-β Pathway

  • Eunae Kim (School of Pharmacy, Sungkyunkwan University) ;
  • Hark Kyun Kim (School of Pharmacy, Sungkyunkwan University) ;
  • Jae Hoon Sul (School of Pharmacy, Sungkyunkwan University) ;
  • Jeongmi Lee (School of Pharmacy, Sungkyunkwan University) ;
  • Seung Hyun Baek (School of Pharmacy, Sungkyunkwan University) ;
  • Yoonsuk Cho (School of Pharmacy, Sungkyunkwan University) ;
  • Jihoon Han (School of Pharmacy, Sungkyunkwan University) ;
  • Junsik Kim (School of Pharmacy, Sungkyunkwan University) ;
  • Sunyoung Park (School of Pharmacy, Sungkyunkwan University) ;
  • Jae Hyung Park (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University) ;
  • Yong Woo Cho (ExoStemTech Inc.) ;
  • Dong-Gyu Jo (School of Pharmacy, Sungkyunkwan University)
  • Received : 2023.11.03
  • Accepted : 2023.11.30
  • Published : 2024.07.01

Abstract

Systemic sclerosis is an autoimmune disease characterized by inflammatory reactions and fibrosis. Myofibroblasts are considered therapeutic targets for preventing and reversing the pathogenesis of fibrosis in systemic sclerosis. Although the mechanisms that differentiate into myofibroblasts are diverse, transforming growth factor β (TGF-β) is known to be a key mediator of fibrosis in systemic sclerosis. This study investigated the effects of extracellular vesicles derived from human adipose stem cells (ASC-EVs) in an in vivo systemic sclerosis model and in vitro TGF-β1-induced dermal fibroblasts. The therapeutic effects of ASC-EVs on the in vivo systemic sclerosis model were evaluated based on dermal thickness and the number of α-smooth muscle actin (α-SMA)-expressing cells using hematoxylin and eosin staining and immunohistochemistry. Administration of ASC-EVs decreased both the dermal thickness and α-SMA expressing cell number as well as the mRNA levels of fibrotic genes, such as Acta2, Ccn2, Col1a1 and Comp. Additionally, we discovered that ASC-EVs can decrease the expression of α-SMA and CTGF and suppress the TGF-β pathway by inhibiting the activation of SMAD2 in dermal fibroblasts induced by TGF-β1. Finally, TGF-β1-induced dermal fibroblasts underwent selective death through ASC-EVs treatment. These results indicate that ASC-EVs could provide a therapeutic approach for preventing and reversing systemic sclerosis.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF-2019R1A2C3011422, NRF-2019R1A5A2027340). This work was also supported by the Korea Drug Development Fund (KDDF-HN21C1266) and the Ministry of Oceans and Fisheries' R&D project, Korea (1525011845).

References

  1. Allanore, Y., Simms, R., Distler, O., Trojanowska, M., Pope, J., Denton, C. P. and Varga, J. (2015) Systemic sclerosis. Nat. Rev. Dis. Primers 1, 15002.
  2. Bhattacharyya, S., Wei, J. and Varga, J. (2011) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8, 42-54.
  3. Blazquez, R., Sanchez-Margallo, F. M., de la Rosa, O., Dalemans, W., Alvarez, V., Tarazona, R. and Casado, J. G. (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front. Immunol. 5, 556.
  4. Cho, B. S., Kim, J. O., Ha, D. H. and Yi, Y. W. (2018) Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther. 9, 187.
  5. Choi, J. S., Cho, W. L., Choi, Y. J., Kim, J. D., Park, H. A., Kim, S. Y., Park, J. H., Jo, D. G. and Cho, Y. W. (2019) Functional recovery in photo-damaged human dermal fibroblasts by human adiposederived stem cell extracellular vesicles. J. Extracell. Vesicles 8, 1565885.
  6. Darby, I. A., Laverdet, B., Bonte, F. and Desmouliere, A. (2014) Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7, 301-311.
  7. Darby, I. A., Zakuan, N., Billet, F. and Desmouliere, A. (2016) The myofibroblast, a key cell in normal and pathological tissue repair. Cell. Mol. Life Sci. 73, 1145-1157.
  8. Dees, C., Akhmetshina, A., Zerr, P., Reich, N., Palumbo, K., Horn, A., Jungel, A., Beyer, C., Kronke, G., Zwerina, J., Reiter, R., Alenina, N., Maroteaux, L., Gay, S., Schett, G., Distler, O. and Distler, J. H. (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961-972.
  9. Dimarino, A. M., Caplan, A. I. and Bonfield, T. L. (2013) Mesenchymal stem cells in tissue repair. Front. Immunol. 4, 201.
  10. El Agha, E., Kramann, R., Schneider, R. K., Li, X., Seeger, W., Humphreys, B. D. and Bellusci, S. (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21, 166-177.
  11. EL Andaloussi, S., Mager, I., Breakefield, X. O. and Wood, M. J. (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347-357.
  12. Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., Qian, X., Wu, M., Ji, K., Zhao, Y., Wang, Y., Liu, H. and Xing, X. (2016) Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing. Stem Cells Transl. Med. 5, 1425-1439.
  13. Farini, A., Sitzia, C., Erratico, S., Meregalli, M. and Torrente, Y. (2014) Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014, 306573.
  14. Fatima, F. and Nawaz, M. (2015) Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin. J. Cancer 34, 541-553.
  15. Ferguson, S. W. and Nguyen, J. (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J. Control. Release 228, 179-190.
  16. Ferreira, A. D. F. and Gomes, D. A. (2018) Stem cell extracellular vesicles in skin repair. Bioengineering (Basel) 6, 4.
  17. Gurtner, G. C., Werner, S., Barrandon, Y. and Longaker, M. T. (2008) Wound repair and regeneration. Nature 453, 314-321.
  18. He, Y., Li, F., Zhang, C., Geng, X., Syeda, M. Z., Du, X., Shao, Z., Hua, W., Li, W., Chen, Z., Ying, S. and Shen, H. (2021) Therapeutic effects of the Bcl-2 inhibitor on bleomycin-induced pulmonary fibrosis in mice. Front. Mol. Biosci. 8, 645846.
  19. Heldin, C.-H., Miyazono, K. and ten Dijke, P. (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.
  20. Hinz, B. and Lagares, D. (2020) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11-31.
  21. Ho, Y. Y., Lagares, D., Tager, A. M. and Kapoor, M. (2014) Fibrosis--a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10, 390-402.
  22. Hu, L., Wang, J., Zhou, X., Xiong, Z., Zhao, J., Yu, R., Huang, F., Zhang, H. and Chen, L. (2016) Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 6, 32993.
  23. Hyvarinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Kakela, R., Laitinen, S. and Kerkela, E. (2018) Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Front. Immunol. 9, 771.
  24. Joan Massague, D. W. (2000) Transriptional control by the TGF-b/Smad signaling system. EMBO J. 19, 1745-1754.
  25. Jung, Y. J., Kim, H. K., Cho, Y., Choi, J. S., Woo, C. H., Lee, K. S., Sul, J. H., Lee, C. M., Han, J., Park, J. H., Jo, D.-G. and Cho, Y. W. (2020) Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci. Adv. 6, eaay6721.
  26. Kim, H. K., Cho, J., Kim, E., Kim, J., Yang, J. S., Kim, K. C., Lee, J. Y., Shin, Y., Palomera, L. F., Park, J., Baek, S. H., Bae, H. G., Cho, Y., Han, J., Sul, J. H., Lee, J., Park, J. H., Cho, Y. W., Lee, W. and Jo, D. G. (2022) Engineered small extracellular vesicles displaying ACE2 variants on the surface protect against SARS-CoV-2 infection. J. Extracell. Vesicles 11, e12179.
  27. Kis, K., Liu, X. and Hagood, J. S. (2011) Myofibroblast differentiation and survival in fibrotic disease. Expert Rev. Mol. Med. 13, e27.
  28. Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., Iwaisako, K., Moore-Morris, T., Scott, B., Tsukamoto, H., Evans, S. M., Dillmann, W., Glass, C. K. and Brenner, D. A. (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9448-9453.
  29. Ko, H.-J. and Kim, Y.-J. (2023) Antigen delivery systems: past, present, and future. Biomol. Ther. (Seoul) 31, 370-387.
  30. Lagares, D., Santos, A., Grasberger, P. E., Liu, F., Probst, C. K., Rahimi, R. A., Sakai, N., Kuehl, T., Ryan, J., Bhola, P., Montero, J., Kapoor, M., Baron, M., Varelas, X., Tschumperlin, D. J., Letai, A. and Tager, A. M. (2017) Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765.
  31. Lee, K. S., Lee, J., Kim, H. K., Yeom, S. H., Woo, C. H., Jung, Y. J., Yun, Y. E., Park, S. Y., Han, J., Kim, E., Sul, J. H., Jung, J. M., Park, J. H., Choi, J. S., Cho, Y. W. and Jo, D. G. (2021) Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J. Extracell. Vesicles 10, e12152.
  32. Liu, L., Liu, X., Ren, X., Tian, Y., Chen, Z., Xu, X., Du, Y., Jiang, C., Fang, Y., Liu, Z., Fan, B., Zhang, Q., Jin, G., Yang, X. and Zhang, X. (2016) Smad2 and Smad3 have differential sensitivity in relaying TGFbeta signaling and inversely regulate early lineage specification. Sci. Rep. 6, 21602.
  33. Rivera-Gonzalez, G., Shook, B. and Horsley, V. (2014) Adipocytes in skin health and disease. Cold Spring Harb. Perspect. Med. 4, a015271.
  34. Shi, Y., Hu, G., Su, J., Li, W., Chen, Q., Shou, P., Xu, C., Chen, X., Huang, Y., Zhu, Z., Huang, X., Han, X., Xie, N. and Ren, G. (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510-518.
  35. Squillaro, T., Peluso, G. and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25, 829-848.
  36. Thery, C., Zitvogel, L. and Amigorena, S. (2002) Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569-579.
  37. Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726-736.
  38. Walton, K. L., Johnson, K. E. and Harrison, C. A. (2017) Targeting TGF-beta mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 8, 461.
  39. Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., Hu, B., Song, J. and Chen, L. (2017) Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 7, 13321.
  40. Wynn, T. A. (2008) Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199-210.
  41. Yamamoto, T. (2006) The bleomycin-induced scleroderma model: what have we learned for scleroderma pathogenesis? Arch. Dermatol. Res. 297, 333-344.
  42. Yamamoto, T., Takagawa, S., Katayama, I., Yamazaki, K., Hamazaki, Y., Shinkai, H. and Nishioka, K. (1999) Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Invest. Dermatol. 112, 456-462.
  43. Yanez-Mo, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borras, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colas, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N. H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Kramer-Albers, E. M., Laitinen, S., Lasser, C., Lener, T., Ligeti, E., Line, A., Lipps, G., Llorente, A., Lotvall, J., Mancek-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-'t Hoen, E. N., Nyman, T. A., O'Driscoll, L., Olivan, M., Oliveira, C., Pallinger, E., Del Portillo, H. A., Reventos, J., Rigau, M., Rohde, E., Sammar, M., Sanchez-Madrid, F., Santarem, N., Schallmoser, K., Ostenfeld, M. S., Stoorvogel, W., Stukelj, R., Van der Grein, S. G., Vasconcelos, M. H., Wauben, M. H. and De Wever, O. (2015) Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066.
  44. Yang, X., Chen, B., Liu, T. and Chen, X. (2014) Reversal of myofibroblast differentiation: a review. Eur. J. Pharmacol. 734, 83-90.
  45. Zhang, H.-Y. and Phan, S. H. (1999) Inhibition of myofibroblast apoptosis by transforming growth factor β1. Am. J. Respir. Cell Mol. Biol. 21, 658-665.
  46. Zhao, H., Shang, Q., Pan, Z., Bai, Y., Li, Z., Zhang, H., Zhang, Q., Guo, C., Zhang, L. and Wang, Q. (2018) Exosomes from adiposederived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 67, 235-247.
  47. Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C. and Lai, P. (2021) Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14, 24.