• Title/Summary/Keyword: Extracellular vesicle

Search Result 23, Processing Time 0.029 seconds

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

The effects of testosterone propionate, dihydrotestosterone, nandrolone decanoate on the levels of phosphocreatine and creatine in the mouse seminal vesicle (Testosterone propionate, dihydrotestosterone, nandrolone decanoate가 마우스 정낭선의 phosphocreatine과 creatine의 농도에 미치는 영향)

  • Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.263-270
    • /
    • 1995
  • Creatine(Cr) and phosphocreatine(PCr), the important mediators of intracellular high-energy phosphate buffer system, were found in the tissues of mouse seminal vesicle and also in the extracellular fluids of seminal vesicle secretion. This study was performed m confirm that the secretion and accumulation of Cr and PCr is regulated by testosterone and its $5{\alpha}$-reduced metabolite, $5{\alpha}$-dihydrotestosterone(DHT). In addition, the effect of nandrolone decanoate(ND), a synthetic anabolic steroid, on the levels of Cr and PCr in the seminal vesicle was compared with those of testosterone propionate(TP) and DHT. Male Swiss-Webster mice were castrated and three groups of the castrates were treated with daily injection(sc) of same molar dose($1.45{\times}10^{-8}mol/g\;BW$) of TP, DHT, or ND. All three androgens rapidly increased weights of seminal vesicle tissue and fluid, and also increased concentrations of Cr and PCr in the tissue and fluid. However, ND was least effective in increasing seminal vesicle weights, whereas ND was as effective as, or in some cases, more effective than, TP or DHT in increasing Cr and PCr levels in the tissue and fluid. The results confirm that the accumulation of Cr and PCr in the seminal vesicles is regulated by testosterone and DHT, and also suggest that the effects of androgens on seminal vesicle growth and secretory activity may be differentiated.

  • PDF

Extracellular Vesicles in Psychiatry Research in the Context of RDoC Criteria

  • Ilgin, Can;Topuzoglu, Ahmet
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1011-1018
    • /
    • 2018
  • The analysis of extracellular vesicles has been accelerated because of the technological advancements in omics methods in recent decades. Extracellular vesicles provide multifaceted information regarding the functional status of the cells. This information would be critical in case of central nervous system cells, which are confined in a relatively sealed biological compartment. This obstacle is more dramatic in psychiatric disorders since their diagnosis primarily depend on the symptoms and signs of the patients. In this paper, we reviewed this rapidly advancing field by discussing definition of extracellular vesicles, their biogenesis and potential use as clinical biomarkers. Then we focused on their potential use in psychiatric disorders in the context of diagnosis and treatment of these disorders. Finally, we tried to combine the RDoC (Research Domain Criteria) with the use of extracellular vesicles in psychiatry research and practice. This review may offer new insights in both basic and translational research focusing on psychiatric disorders.

Isolation and characterization of the outer membrane vesicle (OMV) protein from Vibrio anguillarum O1 (Vibrio anguillarum O1이 생산하는 Outer Membrane Vesicle (OMV)의 분리 및 OMV 내의 단백질 특성)

  • Hong, Gyeong-Eun;Kim, Dong-Gyun;Min, Mun-Kyeong;Kong, In-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.123-125
    • /
    • 2007
  • Vibrio anguillarum is a gram-negative bacterium that causes vibriosis in approximately 80 different fish species. V. anguillarum produces several exotoxins are correlated with the pathogenesis of vibriosis. This study is focused on the composition of the outer membrane vesicle. Most of gram-negative bacteria produce outer membrane vesicle (OMV) during cell growth. OMV was formed from the outer membrane surface of cell and than released to extracellular environment. OMV consists of outer membrane lipids, outer membrane protein (OMP), LPS, and soluble periplasmic components. Also, they contain toxins, adhesions, and immunomodulatory. Many gram-negative bacteria were studied out forming OMV. In Vibrio sp., formation of OMV by electron microscopy has been reported from V. cholerae and V. parahaemolyticus. In present study, we isolated OMV from V. anguillarum and OMV protein was separated by SDS-PAGE. Magor band was sliced and analyzed by MALDI-TOF. The major protein band of 38kDa was identified as OmpU by MALDI-TOF MS analysis.

  • PDF

Visualization of Extracellular Vesicles of Prokaryotes and Eukaryotic Microbes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.96-101
    • /
    • 2018
  • The release of nanoscale membrane-bound vesicles is common in all three domains of life. These vesicles are involved in a variety of biological processes such as cell-to-cell communication, horizontal gene transfer, and substrate transport. Prokaryotes including bacteria and archaea release membrane vesicles (MVs) (20 to 400 nm in diameter) into their extracellular milieu. In spite of structural differences in cell envelope, both Gram-positive and negative bacteria produce MVs that contain the cell membrane of each bacterial species. Archaeal MVs characteristically show surface-layer encircling the vesicles. Filamentous fungi and yeasts as eukaryotic microbes produce bilayered exosomes that have varying electron density. Microbes also form intracellular vesicles and minicells that are similar to MVs and exosomes in shape. Electron and fluorescence microscopy could reveal the presence of DNA in MVs and exosomes. Given the biogenesis of extracellular vesicles from the donor cell, in situ high-resolution microscopy can provide insights on the structural mechanisms underlying the formation and release of microbial extracellular vesicles.

Expression of Latent P-Type ATPases and Their Presumptive Roles in Cell Membrane of Helicobacter pylori

  • YUN, SOON-KYU;SE-YOUNG HWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.378-385
    • /
    • 1997
  • Cation motive ATPases on cell membranes of Helicobacter pylori were investigated using everted membrane vesicles. Latent ATPases could be ascertained from aggregated vesicle using N, N-dimethylformamide (DMF) and Triton X-100. By contrast, ultrasonication or chloroform treatments caused membranes to be disrupted, resulting in an alteration of sensitivities against azide or vanadate. Considerable amounts of vanadate-sensitive enzymes were identified from vesicle micelles, prepared by the dilution method. These were activated in the presence of either $Ni^{2+}\;or\;NH_4^+$. From studies employing H. pylori intact cell systems, we found that ATPase expression of this bacterium was markedly dependent upon air composition. It was interesting that cellular expression of $Ni^{2+}$- or $NH_4^{+}$-motive ATPases was significantly affected by extracellular pH, suggesting that these unique enzymes may physiologically be involved in cellular $Ni^2$ import and $NH_4^+$ export, respectively.

  • PDF

Antigen Delivery Systems: Past, Present, and Future

  • Hyun-Jeong Ko;Yeon-Jeong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.370-387
    • /
    • 2023
  • The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

Multiplexed targeting of microRNA in stem cell-derived extracellular vesicles for regenerative medicine

  • Song, Byeong-Wook;Oh, Sekyung;Chang, Woochul
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting.