• Title/Summary/Keyword: $TGF{\beta}1$

Search Result 658, Processing Time 0.028 seconds

Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts (인간 폐섬유아세포에서 TGF-β 자극에 의한 VEGF 분비)

  • Park, Sang-Uk;Shin, Joo-Hwa;Shim, Jae-Won;Kim, Deok-Soo;Jung, Hye-Lim;Park, Moon-Soo;Shim, Jung-Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • Purpose : The human lung fibroblast may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, which are important in airway remodeling. Vascular endothelial growth factor (VEGF) induces mucosal edema and angiogenesis. Thymus and activation regulated chemokine (TARC) induces selective migration of T helper 2 cells. We investigated whether human lung fibroblasts produced VEGF and TARC, and the effects were augmented with the co-culture of fibroblasts and human bronchial smooth muscle cells (HBSMC), and whether dexamethasone can inhibit the proliferation and the release of VEGF in lung fibroblasts. Methods : Human lung fibroblasts were cultured with and without HBSMC, growth-arrested in serum-deprived medium, and pretreated with dexamethasone for 16 hours. After 24-hour stimulation with platelet derived growth factor-BB (PDGF-BB) and/or transforming growth factor-${\beta}$ (TGF-${\beta}$), culture supernatant was harvested for assays of VEGF and TARC. Cell proliferation was assayed using BrdU cell proliferation ELISA kit. Results : 1) The release of VEGF was significantly increased after stimulation with TGF-${\beta}$, and its release was augmented when co-stimulated with PDGF and TGF-${\beta}$. 2) VEGF release induced by PDGF or TGF-${\beta}$ was inhibited by dexamethasone. 3) There was no synergistic effect on the release of VEGF when human lung fibroblasts were co-cultured with HBSMC. 4) Dexamethasone did not suppress human lung fibroblasts proliferations. 5) Neither TGF-${\beta}$ nor PDGF induced TARC release from lung fibroblasts. Conclusion : Human lung fibroblasts may modulate airway remodeling by release of VEGF, but they have no synergistic effects when co-cultured with HBSMC. Dexamethasone suppresses VEGF release, not proliferation of lung fibroblast.

Effects of Folium Perillae on cytokine productions in ischemic rats (소엽(蘇葉) 추출물이 뇌허혈이 유발된 백서의 cytokine분비에 미치는 영향)

  • Yang, Gi-Ho;Kim, Hyung-Woo;Cho, Su-Jin;Kim, Sang-Dae;Yoon, Kwan-Hee;Kim, Bu-Yeo;Jeong, Hyun-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.93-99
    • /
    • 2007
  • Objective : The present study was carried out to investigate the effects of Folium Perillae (FP) on several cytokine production such as IL-1$\beta$, TNF-$\alpha$, IL-10 and TGF-$\beta$ to determine related mechanisma in Rats. Methods: So, we investigated the effects of FP on levels of several cytokines such as IL-l$\beta$, TNF-$\alpha$, IL-10 and TGF-$\beta$ in ischemic rats. Results: In this experiment, IL-10, an immune-modulatory cytckine, level was elevated by treatment with FP, but another regulatory cytokine, TGF-$\beta$1 level was not affected. On the other hand, levels of IL-l$\beta$ and TNF-$\alpha$, an inflammatory cytokines, were lowered by treatment with FP effectively. Conclusion : In conclusion, these results suggest that FP is useful to treat patient with disease related to cerebral ischemia, because FP can elevate IL-10 level, lower IL-l$\beta$ and TNF-$\alpha$ levels.

  • PDF

Mechanism of Mixture of Bambusae Caulis in Liquamen and Bamboo Extract on the Cerebral Blood Flow and Blood Pressure in Rats (죽력(竹瀝)과 대나무 추출액의 혼합물이 뇌혈류 및 혈압에 미치는 작용 기전)

  • Kim, Cheon-Joong;Kim, Gye-Yeop;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1612-1619
    • /
    • 2006
  • This Study was designed to investigate the mechanism of Mixture of Bambusae Caulis in Liquamen and Bamboo Extract on the change of regional cerebral blood flow (rCBF) and blood pressure (BP) in normal rats, and further to investigate cytokines production in serum of cerebral ischemic rats. Mixture were as follows ; Bamboo Extract extracted with distilled water at 98 $^{\circ}C$ for 3 hrs, Mixture of Bambusae Caulis in Liquamen and bamboo Extracts (MLE) mixed at the ratio 1 to 100 (MLE100), 1 to 50 (MLE50), 1 to 20 (MLE20), 1 to 10 (MLE10), 1 to 5 (MLE5). The results were as follows ; The MLE-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin (1 mg/kg, I.p.), an inhibitor of cyclooxygenase as well as methylene blue (10 $^{\mu}g/kg$, I.p.), an inhibitor of guanylate cyclase. The MLE-induced increase in BP was significantly inhibited by pretreatment with methylene blue. In cytokines production in the serum drawn from femoral arterial 1 hr after middle cerebral artery occlusion, MLE5 significantly increased production of TGF-${\beta}$ and increased production of IL-10, but significantly decreased production of TGF-${\alpha}$ compared with control group. In cytokines production in the serum drawn from femoral arterial 1 hr after reperfusion, MLE5 significantly increased production of TGF-${\beta}$ and IL-10, but significantly decreased production of TGF-${\alpha}$ compared with control group. AS results above. And MLE5 had anti-ischemic effect by inhibiting TGF-${\alpha}$ production, and by accelerating IL-10 and TGF-${\beta}$ production.

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract (진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과)

  • Lee, Min-Ho;Kim, Hyung-Jin;Jung, Hyun-Ah;Lee, Young-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1857-1862
    • /
    • 2013
  • Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

Immunological Activity of Bovine Colostral Whey Protein Containing TGF-β from Imsil Province (임실지역 젖소 초유로부터 분리한 TGF-β 함유 유청 단백질의 면역활성)

  • Yang, Hee-Sun;Oh, Hyun-Hee;Choi, Hee-Young;Park, Jong-Hyuk;Kim, Kyoung-Hee;Oh, Jeon-Hui;Jung, Hoo-Kil
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • This experiment was carried out in order to separate bovine colostral whey protein from Imsil province and to test the effect of immunological activity on RAW 264.7 cells. The colostral whey protein contained TGF-${\beta}$ 7, 475 pg/g in total. We first tested the effect of the colostral whey protein on the proliferation of RAW 264.7 cells and it demonstrated cytotoxicity at concentrations greater than 20 mg/mL. Therefore, the immunological activities of colostral whey protein were investigated in maximum concentration of 10 mg/mL on LPS-induced RAW 264.7 cells. Results indicated that colostral whey protein inhibited the LPS-induced nitric oxide (NO) production in a dose-dependent manner. The colostral whey protein also suppressed the productions of proinflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in a dose-dependent manner. In addition to the immunological activity, colostral whey protein led to the expression of heme oxygenase-1 (HO-1) in RAW 264.7 cells. In conclusion, colostral whey protein containing TGF-${\beta}$ inhibited the production of NO, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 via expression of HO-1.

Relationships between Pork Quality Traits and Growth Factor Concentrations in Serum and Longissimus dorsi Muscle before and at Slaughter in Female Market Pigs

  • Kim, Min Ho;Kang, Moon Sung;Ha, Duck Min;Ko, Yong;Lee, C. Young
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • The present study was conducted to test a hypothesis that pork quality traits would be influenced by the systemic and/or local bioavailability of insulin-like growth factor-I (IGF-I), transforming growth factor-${\beta}1$ (TGF-${\beta}1$), or epidermal growth factor (EGF) before or at slaughter. To this end, 60 cross-bred female market pigs weighing approximately 110 kg were slaughtered, after which Longissimus dorsi muscle (LM) samples taken at slaughter (D 0) and blood samples taken at D -7 and D 0 were analyzed. The 60 carcasses rendered 36 RFN (reddish-pink, firm, and non-exudative), 16 RSE (reddish-pink, soft, and exudative), and 6 PSE (pale, soft, and exudative); 2 DFD (dark, firm, and dry) also were found but were excluded in subsequent experiments. The $L^*$ and drip loss were greater in PSE vs. RFN and RSE and in PSE and RSE vs. RFN, respectively, as they should (P<0.05). The $pH_{45min}$ was less in PSE vs. RFN (P<0.05); $pH_{24h}$ tended to be less in the former (P=0.09). The LM IGF-I and TGF-${\beta}1$ as well as serum EGF concentrations were less in PSE than in RFN. None of the other LM and serum concentrations of the three growth factors differed across the three pork quality categories. The LM IGF-I and TGF-${\beta}1$ concentrations and serum EGF concentration at D 0 were negatively correlated with drip loss [r = -0.36(P<0.01), -0.44 (P<0.01), and -0.32 (P<0.05), respectively]. However, none of the serum and LM growth factor variables was correlated with $L^*$ or $a^*$ (redness) of LM. Taken together, results suggest that locally expressed IGF-I and TGF-${\beta}1$ and blood-borne EGF may have a beneficial effect on postmortem water holding capacity of the muscle and that pork quality traits could be predicted to some extent from concentrations of IGF-I and TGF-${\beta}1$ in muscle and EGF in serum at slaughter.

Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments (종양미세환경에서 이질적인 사이토카인에 의한 PN-MES 뇌종양줄기세포 전이 조절)

  • Lee, Seon Yong;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.530-536
    • /
    • 2019
  • Glioblastoma (GBM) is the most incurable brain cancer derived from the transformed glial cells. Standard anti-GBM treatment, including surgery and chemoradiotherapy, does not ensure good prognosis for the patients with GBM, because successful therapy is often impeded by presence of glioma stem cells (GSCs). GSCs, which is generally divided into proneural (PN) and mesenchymal (MES) subtype, are understood as subpopulation of cancer cells responsible for GBM initiation, progression and recurrence after standard treatments. In the present study, we demonstrate that PN subtype GSCs differentially transit to MES subtype GSCs by specific cytokines. The expression of CD44, a marker of MES subtype GSCs, was observed when GSC11 PN subtype GSCs were exposed to tumor necrosis factor alpha ($TNF-{\alpha}$) cytokine and GSC23 PN subtype GSCs were treated to transforming growth factor beta 1 ($TGF-{\beta}1$) cytokine. Ivy glioblastoma atlas project (Ivy GAP) bioinformatics database showed that $TNF-{\alpha}$ and $TGF-{\beta}1$ were highly expressed in necrotic region and perivascular region, respectively. In addition, $TNF-{\alpha}$ signaling was relatively upregulated in necrotic region, while $TGF-{\beta}$ signaling was increased in perivascular region. Taken together, our observations suggest that MES subtype GSCs can be derived from various PN subtype GSCs by multimodal cytokine stimuli provided by neighboring tumor microenvironment.

Bevacizumab accelerates corneal wound healing by inhibiting TGF-βexpression in alkali-burned mouse cornea

  • Lee, Sung-Ho;Leem, Hyun-Sung;Jeong, Seon-Mi;Lee, Koon-ja
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.800-805
    • /
    • 2009
  • This study investigated the effect of subconjunctival injections of bevacizumab, an anti-VEGF antibody, on processes involved in corneal wound healing after alkali burn injury. Mice were divided into three groups: Group 1 was the saline-treated control, group 2 received subconjunctival injection of bevacizumab 1hr after injury and group 3 received bevacizumab 1 hr and 4 days after injury. Cornea neovascularization and opacity were observed using a slit lamp microscope. Corneal repair was assessed through histological analysis and immunostaining for CD31, $\alpha$-SMA, collagen I, and TGF-$\beta$2 7 days post-injury. In group 3, injection of bevacizumab significantly lowered neovascularization and improved corneal transparency. Immunostaining analysis demonstrated a reduction in CD31, $\alpha$-SMA and TGF-$\beta$2 levels in stroma compared to group 1. These results indicate that bevacizumab may be useful in reducing neovascularization and improving corneal transparency following corneal alkali burn injury by accelerating regeneration of the basement membrane.

Znf45l affects primitive hematopoiesis by regulating transforming growth factor-β signaling

  • Chen, Huijuan;Sun, Huaqin;Tao, Dachang;Yang, Ping;Bian, Shasha;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Znf45l, containing classical $C_2H_2$ domains, is a novel member of Zinc finger proteins in zebrafish. In vertebrates, TGF-${\beta}$ signaling plays a critical role in hematopoiesis. Here, we showed that Znf45l is expressed both maternally and zygotically throughout early development. Znf45l-depleted Zebrafish embryos display shorter tails and necrosis with reduced expression of hematopoietic maker genes. Furthermore, we revealed that znf45l locates downstream of TGF-${\beta}$ ligands and maintains normal level of TGF-${\beta}$ receptor type II phosphorylation. In brief, our results indicate that znf45l affects initial hematopoietic development through regulation of TGF-${\beta}$ signaling.

Ellagic Acid Exerts Anti-proliferation Effects via Modulation of Tgf-Β/Smad3 Signaling in MCF-7 Breast Cancer Cells

  • Zhang, Tao;Chen, Hong-Sheng;Wang, Li-Feng;Bai, Ming-Han;Wang, Yi-Chong;Jiang, Xiao-Feng;Liu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.273-276
    • /
    • 2014
  • Ellagic acid has been shown to inhibit tumor cell growth. However, the underlying molecular mechanisms remain elusive. In this study, our aim was to investigate whether ellagic acid inhibits the proliferation of MCF-7 human breast cancer cells via regulation of the TGF-${\beta}$/Smad3 signaling pathway. MCF-7 breast cancer cells were transfected with pEGFP-C3 or pEGFP-C3/Smad3 plasmids, and treated with ellagic acid alone or in combination with SIS3, a specific inhibitor of Smad3 phosphorylation. Cell proliferation was assessed by MTT assay and the cell cycle was detected by flow cytometry. Moreover, gene expression was detected by RT-PCR, real-time PCR and Western blot analysis. The MTT assay showed that SIS3 attenuated the inhibitory activity of ellagic acid on the proliferation of MCF-7 cells. Flow cytometry revealed that ellagic acid induced G0/G1 cell cycle arrest which was mitigated by SIS3. Moreover, SIS3 reversed the effects of ellagic acid on the expression of downstream targets of the TGF-${\beta}$/Smad3 pathway. In conclusion, ellagic acid leads to decreased phosphorylation of RB proteins mainly through modulation of the TGF-${\beta}$/Smad3 pathway, and thereby inhibits the proliferation of MCF-7 breast cancer cells.