DOI QR코드

DOI QR Code

Bevacizumab accelerates corneal wound healing by inhibiting TGF-βexpression in alkali-burned mouse cornea

  • Published : 2009.12.31

Abstract

This study investigated the effect of subconjunctival injections of bevacizumab, an anti-VEGF antibody, on processes involved in corneal wound healing after alkali burn injury. Mice were divided into three groups: Group 1 was the saline-treated control, group 2 received subconjunctival injection of bevacizumab 1hr after injury and group 3 received bevacizumab 1 hr and 4 days after injury. Cornea neovascularization and opacity were observed using a slit lamp microscope. Corneal repair was assessed through histological analysis and immunostaining for CD31, $\alpha$-SMA, collagen I, and TGF-$\beta$2 7 days post-injury. In group 3, injection of bevacizumab significantly lowered neovascularization and improved corneal transparency. Immunostaining analysis demonstrated a reduction in CD31, $\alpha$-SMA and TGF-$\beta$2 levels in stroma compared to group 1. These results indicate that bevacizumab may be useful in reducing neovascularization and improving corneal transparency following corneal alkali burn injury by accelerating regeneration of the basement membrane.

Keywords

References

  1. Stoltz, R. A., Conners, M. S., Gerritsen, M. E., Abraham, N. G. and Laniado-Schwartzman, M. (1996) Direct stimulation of limbal microvessel endothelial cell proliferation and capillary formation in vitro by a corneal-derived eicosanoid. Am. J. Pathol. 148, 129-139
  2. Cursiefen, C., Cao, J., Chen, L., Liu, Y., Maruyama, K. Jackson, D., Kruse, F. E., Wiegand, S. J., Dana, M. R. and Streilein, J. W. (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal ransplantation by neutralizing VEGF promotes graft survival. Invest. Ophthalmol. Vis. Sci. 45, 2666-2673 https://doi.org/10.1167/iovs.03-1380
  3. Casey, R. and Li, W. W. (1997) Factors controlling ocular angiogenesis. Am. J. Ophthalmol. 124, 521-529 https://doi.org/10.1016/S0002-9394(14)70868-2
  4. Chang, J. H., Gabison, E. E., Kato, T. and Azar, D. T. (2001) Corneal neovascularization. Curr. Opin. Ophthalmol. 12, 242-249 https://doi.org/10.1097/00055735-200108000-00002
  5. Dawson, D. W., Volpert, O. V., Gillis, P., Crawford, S. E., Xu, H., Benedict, W. and Bouck, N. P. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245-248 https://doi.org/10.1126/science.285.5425.245
  6. Zhang, P., Wu, D., Ge, J., Zhu, Z., Feng, G., Yue, T., Lin, J. and Zheng, H. (2003) Experimental inhibition of corneal neovascularization by endostatin gene transfection in vivo. Chin. Med. J. (Engl.) 116, 1869-1874
  7. Ormerod, L. D., Abelson, M. B. and Kenyon, K. R. (1989) Standard models of corneal injury using alkali-immersed filter discs. Invest. Ophthalmol. Vis. Sci. 30, 2148-2153
  8. Ormerod, L. D., Garsd, A., Reddy, C. V., Gomes, S. A., Abelson, M. B. and Kenyon, K. R. (1989) Dynamics of corneal epithelial healing after an alkali burn. A statistical analysis. Invest. Ophthalmol. Vis. Sci. 30, 1784-1793
  9. Chung, J. H. and Fagerholm, P. (1989) Corneal alkali wound healing in the monkey. Acta. Ophthalmol. (Copenh.) 67, 685-693 https://doi.org/10.1111/j.1755-3768.1989.tb04402.x
  10. Ferrara, N., Hillan, K. J. and Novotny, W. (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 333, 328-335 https://doi.org/10.1016/j.bbrc.2005.05.132
  11. Rosenfeld, P. J., Fung, A. E. and Puliafito, C. A. (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic. Surg. Lasers Imaging 36, 336-339
  12. Kao, W. W., Ebert, J., Kao, C. W., Covington, H. and Cintron, C. (1986) Development of monoclonal antibodies recognizing collagenase from rabbit PMN; the presence of this enzyme in ulcerating corneas. Curr. Eye Res. 5, 801-815 https://doi.org/10.3109/02713688609029231
  13. Burns, F. R., Gray, R. D. and Paterson, C. A. (1990) Inhibition of alkali-induced corneal ulceration and perforation by a thiol peptide. Invest. Ophthalmol. Vis. Sci. 31,107-114
  14. Manzano, R. P., Peyman, G. A, Khan, P., Carvounis, P. E., Kivilcim, M., Ren, M., Lake, J. C. and Chevez-Barrios, P. (2007) Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). Br. J. Ophthalmol. 91, 804-807 https://doi.org/10.1136/bjo.2006.107912
  15. Moromizato, Y., Stechschulte, S., Miyamoto, K., Murata, T., Tsujikawa, A., Joussen, A. M. and Adamis, A. P. (2000) CD18 and ICAM-1-dependent corneal neovascularization and inflammation after limbal injury. Am. J. Pathol. 157, 1277-1281 https://doi.org/10.1016/S0002-9440(10)64643-3
  16. Hosseini, H. and Nejabat, M. (2007) A potential therapeutic strategy for inhibition of corneal neovascularization with new anti-VEGF agents. Med. Hypotheses 68, 799-801 https://doi.org/10.1016/j.mehy.2006.06.063
  17. Lee, J. Y. and Lee, K. J. (2008) Histological changes on the wound healing process of alkali burned mouse cornea. J. Korean Oph. Opt. Soc. 13, 161-169
  18. Desmouliere, A., Darby, I. A. and Gabbiani, G. (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab. Invest. 83, 1689-1707 https://doi.org/10.1097/01.LAB.0000101911.53973.90
  19. Jester, J. V., Huang, J., Petroll, W. M. and Cavanagh, H. D. (2002) TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp. Eye Res. 75, 645-657 https://doi.org/10.1006/exer.2002.2066
  20. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R. A. (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349-363 https://doi.org/10.1038/nrm809
  21. Piek, E., Ju, W. J., Heyer, J., Escalante-Alcalde, D., Stewart, C. L., Weinstein, M., Deng, C., Kucherlapati, R., Bottinger, E. P. and Roberts, A. B. (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J. Biol. Chem. 276, 19945-19953 https://doi.org/10.1074/jbc.M102382200
  22. Evans, R. A., Tian, Y. C., Steadman, R. and Phillips, A. O. (2003) TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp. Cell Res. 282, 90-100 https://doi.org/10.1016/S0014-4827(02)00015-0
  23. Wilson, S. E., Mohan, R. R., Ambrosio, R., Hong, J. and Lee, J. (2001) The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog. Retin. Eye Res. 20, 625-637 https://doi.org/10.1016/S1350-9462(01)00008-8
  24. Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S. and Fini, M. E. (2003) Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest. Ophthalmol. Vis. Sci. 44, 4237-4246 https://doi.org/10.1167/iovs.02-1188
  25. Bascom, C. C., Wolfshohl, J. R., Coffey, R. J., Madisen, L., Webb, N. R., Purchio, A. R., Derynck, R. and Moses, H. L. (1989) Complex regulation of transforming growth factor beta 1, beta 2, and beta 3 mRNA expression in mouse fibroblasts and keratinocytes by transforming growth factors beta 1 and beta 2. Mol. Cell Biol. 9, 5508-5515 https://doi.org/10.1128/MCB.9.12.5508
  26. Dwivedi, D. J., Pontoriero, G. F., Ashery-Padan, R., Sullivan, S., Williams, T. and West-Mays, J. A. (2005) Targeted deletion of AP-2alpha leads to disruption in corneal epithelial cell integrity and defects in the corneal stroma. Invest. Ophthalmol. Vis. Sci. 46, 3623-3630 https://doi.org/10.1167/iovs.05-0028
  27. Yoeruek, E., Ziemssen, F., Henke-Fahle, S., Tatar, O., Tura, A., Grisanti, S., Bartz-Schmidt, K. U. and Szurman, P. (2008) Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal eovascularization after chemical burn. Acta. Ophthalmol. 86, 322-328 https://doi.org/10.1111/j.1600-0420.2007.01049.x

Cited by

  1. Prevention of arthrofibrosis by monoclonal antibody against vascular endothelial growth factor: A novel use of bevacizumab in rabbits vol.98, pp.7, 2012, https://doi.org/10.1016/j.otsr.2012.05.020
  2. Neovascular growth in an experimental alkali corneal burn model vol.89, pp.8, 2014, https://doi.org/10.1016/j.oftale.2014.08.012
  3. Concentration change of TGF -β 1 in aqueous humor of rabbits vol.7, pp.3, 2014, https://doi.org/10.1016/S1995-7645(14)60029-8
  4. Inhibition of Rho-Associated Kinase Prevents Pathological Wound Healing and Neovascularization After Corneal Trauma vol.34, pp.9, 2015, https://doi.org/10.1097/ICO.0000000000000493
  5. Corneal Neovascularization: An Anti-VEGF Therapy Review vol.57, pp.5, 2012, https://doi.org/10.1016/j.survophthal.2012.01.007
  6. Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye 2017, https://doi.org/10.1080/02713683.2017.1317817
  7. Differential Effects of Bevacizumab, Ranibizumab, and Aflibercept on the Viability and Wound Healing of Corneal Epithelial Cells vol.32, pp.10, 2016, https://doi.org/10.1089/jop.2016.0094
  8. Bevacizumab and Ocular Wound Healing After Primary Pterygium Excision vol.27, pp.1, 2011, https://doi.org/10.1089/jop.2010.0094
  9. Bevacizumab eye drops delay corneal epithelial wound healing and increase the stromal response to epithelial injury in rats 2013, https://doi.org/10.1111/ceo.12085
  10. Crecimiento neovascular en un modelo experimental de quemadura corneal por álcali vol.89, pp.8, 2014, https://doi.org/10.1016/j.oftal.2014.02.016
  11. Intraperitoneal Administration of Bevacizumab Intraoperatively Does Not Affect Abdominal Wound Healing in Rats vol.47, pp.1, 2011, https://doi.org/10.1159/000327970
  12. Bevacizumab Revisited: Its Use in Different Mouse Models of Ocular Pathologies vol.40, pp.6, 2015, https://doi.org/10.3109/02713683.2014.943910
  13. Complementary effects of bevacizumab and MMC in the improvement of surgical outcome after glaucoma filtration surgery vol.93, pp.7, 2015, https://doi.org/10.1111/aos.12766
  14. Progress in corneal wound healing vol.49, 2015, https://doi.org/10.1016/j.preteyeres.2015.07.002