• Title/Summary/Keyword: $SnO_2$thin film

Search Result 340, Processing Time 0.027 seconds

Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors ($SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향)

  • 구본급;강병돈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines (마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성)

  • Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

$SnO_2$-based thin film gas sensors in array for recognizing inflammable gases (가연성 가스 인식을 위한 $SnO_2$계열의 박막 가스센서)

  • 이대식;심창현;이덕동
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.289-297
    • /
    • 2001
  • Highly-porous $SnO_2$thin films were prepared for recognizing and detecting of the inflammable gases, like butane, propane, LPG, carbon monoxide. To obtain sensing films, Sn, Pt/Sn, Au/Sn, and Pt,Au/Sn films were deposited employing a thermal evaporator for Sn film and a sputter for novel metals of Pt or/and Au. These films were annealed for 2 h at $700^{\circ}C$ to form $SnO_2$-based thin films. The films showed the tetragonal structure and also exhibited many defects and porosity, which could give high sensitivity to thin films. The thin films showed high sensitivity and reproductivity to the tested gases(butane, propane, LPG, and carbon monoxide) to even to low gas concentrations in range of workplace environmental standards. Especially, Pt/$SnO_2$film showed the highest sensitivity to butane, LPG, and carbon monoxide. And pure $SnO_2$ film manifested the highest sensitivity to propane. By using the sensing patterns from the films, we could reliably recognize the kinds and the quantities of the tested inflammable gases within the range of the threshold limit values(TLV) and the lower explosion limit(LEL) through the principal component analysis(PCA).

  • PDF

Annealing effect of Zn-Sn-O films deposited using combinatorial method (Combinatorial 방법으로 증착한 Zn-Sn-O계 박막의 열처리 효과)

  • Ko, Ji-Hoon;Kim, In-Ho;Kim, Dong-Hwan;Lee, Kyeong-Seok;Park, Jong-Keuk;Lee, Taek-Sung;Baik, Young-Jun;Cheong, Byung-Ki;Kim, Won-Mok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.998-1001
    • /
    • 2004
  • ZnO, $SnO_2$ 타겟 각각의 RF 파워를 50 W, 38 W로 고정시킨 후 combinatorial RF magnetron sputtering법을 사용하여 기판 위치에 따라서 조성 구배를 주어 여러 가지 조성의 Zn-Sn-O(ZTO) 박막을 제작하였다. 시편의 열처리에 따른 물성 변화를 분석하기 위해 Rapid Thermal Annealer(RTA)을 이용하여 450, $650{^\circ}C$의 온도 및 $10^{-2}$ Ton의 진공 분위기에서 각각 1 시간 동안 열처리하였다. XRD 분석 결과 상온에서 제작된 ZTO 박막은 Sn 18 at%의 조성을 갖는 시편을 제외하고 모두 비정질상으로 나타났다. $450^{\circ}C$에서 열처리 후 구조적인 변화는 보이지 않았으나, 캐리어 농도와 이동도는 증가하였으며 Sn 54 at%의 조성에서 최고 $25.4cm^2/Vsec$의 전자 이동도를 나타내었다. $26{\leq}Sn$ $at%{\leq}65$의 조성 범위를 갖는 박막은 가시광 영역에서 80 % 이상의 투과도를 가졌으며 $650^{\circ}C$에서 결정화가 되면서 투과도가 증가하였다.

  • PDF

Characteristics of Pd doped $SnO_2$ gas sensitive thin films (Pd이 도핑된 $SnO_2$ 박막 가스감지막의 특성)

  • Kim, Jin-Hae;Kim, Dae-Hyun;Lee, Yong-Sung;Kim, Jeong-Gyoo;Jeon, Choon-Bae;Park, Hyo-Derk;Park, Ki-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1779-1781
    • /
    • 2000
  • Pd doped $SnO_2$ thin film sensors were prepared on alumina substrate by rf magnetron sputtering method. The sensitivity of thin film was investigated by varying the heat-treatment temperature, film thickness and gas species. The thin film heat-treated at 600$^{\circ}C$ and film thickness of 5000${\AA}$ showed the highest sensitivity at an operating temperature of 400$^{\circ}C$.

  • PDF

Characteristics of $SnO_2$/a-Se/AI sample ($SnO_2$/a-Se/AI 소자의 특성)

  • 박계춘;정운조;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 1994
  • Structural and optical characteristics in $SnO_2$/a-Se/Al sample by aging variation and applying constant voltage had been investigated. a-Se was varied with monoclinic structure and its surface was greatly exchanged. Its capacitance was first decreased and then increased and its photo-current, photo-voltage and photo-capacitance were increased gradually with day and applying voltage. From the results, crystallization of a-Se and dopant trap level formation had been identified. Also, it was acknowledged $SnO_2$/a-Se/Al sample is useful in photovoltaic and solid thin film cell.

  • PDF

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

A Study on CMP Properties of SnO2 Thin Film for Application of Gas Sensor (가스센서 적용을 위한 SnO2 박막의 CMP 특성 연구)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Kim, Nam-Hoon;Park, Jin-Seong;Seo, Yong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1296-1300
    • /
    • 2004
  • SnO$_2$ is one of the most suitable gas sensor materials. The microstructure and surface morphology of films must be controlled because the electrical and optical properties of SnO$_2$ films depend on these characteristics. The effects of chemical mechanical polishing(CMP) on the variation of morphology of SnO$_2$ films prepared by RF sputtering system were investigated. The commercially developed ceria-based oxide slurry, silica-based oxide slurry, and alumina-based tungsten slurry were used as CMP slurry. Non-uniformities of all slurries met stability standards of less than 5 %. Silica slurry had the highest removal rate among three different slurries, sufficient thin film topographies and suitable root mean square(RMS) values.

Effect of Electron Irradiation on the Electrical and Optical Properties of SnO2 Thin Films (전자빔 표면조사에 따른 SnO2 박막의 전기적, 광학적 특성 연구)

  • Song, Young-Hwan;Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.109-112
    • /
    • 2016
  • We have considered the influence of electron irradiation on the optical and electrical properties of $SnO_2$ thin films deposited with reactive RF magnetron sputtering. After deposition, the films electron irradiated at 300 eV shows a lower sheet resistance of $277{\Omega}/{\square}$ and the optical transmittance in a visible wave length region also influenced with the electron irradiation energy. The film that electron irradiated at 400 eV shows a higher optical transmittance of 82.6% in this study. By comparison of figure of merit, it is concluded that the post-deposition electron irradiation at 300 eV is the optimum condition for the enhancement of opto-electrcal performance of $SnO_2$ thin film in this study.