• 제목/요약/키워드: $SnO_2$thin film

검색결과 340건 처리시간 0.027초

악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발 (Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive)

  • 정완영;심창현
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Optical and Electronic Properties of SnO2 Thin Films Fabricated Using the SILAR Method

  • Jang, Joohee;Yim, Haena;Cho, Yoon-Ho;Kang, Dong-Heon;Choi, Ji-Won
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.364-367
    • /
    • 2015
  • Tin oxide thin films were fabricated on glass substrates by the successive ionic layer adsorption and reaction (SILAR) method at room temperature and ambient pressure. Before measuring their properties, all samples were annealed at $500^{\circ}C$ for 2 h in air. Film thickness increased with the number of cycles; X-ray diffraction patterns for the annealed $SnO_2$ thin films indicated a $SnO_2$ single phase. Thickness of the $SnO_2$ films increased from 12 to 50 nm as the number of cycles increased from 20 to 60. Although the optical transmittance decreased with thickness, 50 nm $SnO_2$ thin films exhibited a high value of more than 85%. Regarding electronic properties, sheet resistance of the films decreased as thickness increased; however, the measured resistivity of the thin film was nearly constant with thickness ($3{\times}10^{-4}ohm/cm$). From Hall measurements, the 50 nm thickness $SnO_2$ thin film had the highest mobility of the samples ($8.6cm^2/(V{\cdot}s)$). In conclusion, optical and electronic properties of $SnO_2$ thin films could be controlled by adjusting the number of SILAR cycles.

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics

  • Lee, Su-Jae;Hwang, Chi-Sun;Pi, Jae-Eun;Yang, Jong-Heon;Byun, Chun-Won;Chu, Hye Yong;Cho, Kyoung-Ik;Cho, Sung Haeng
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1135-1142
    • /
    • 2015
  • Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.

Investigation of long-term stability of pentacene thin-film transistors encapsulated with transparent $SnO_2$

  • Kim, Woo-Jin;Koo, Won-Hoe;Jo, Sung-Jin;Kim, Chang-Su;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1276-1279
    • /
    • 2005
  • The long-term stability of pentacene thin-film transistors (TFTs) encapsulated with a transparent $SnO_2$ thin-film prepared by ion beam assisted deposition (IBAD) was investigated. With a buffer layer of thermally evaporated 100 nm $SnO_2$ film deposited prior to IBAD process, our encapsulated OTFTs sustained its initial field-effect mobility up to one month and then gradually degraded showing only 37% reduction compared to 90% reduction of non-encapsulated OTFTs after 100 days in air ambient. The encapsulated OTFTs also exhibited superior on/off current ratio of over $10^5$ to that of the unprotected devices $({\sim}10^4)$ which was reduced from ${\sim}10^6$ before aging. Therefore, the enhanced long-term stability of our encapsulated OTFTs should be attributed to well protection of permeation of $H_2O$ and $O_2$ into the devices by the IBAD $SnO_2$ thin-film which could be used as an effective inorganic gas barrier for transparent organic electronic devices.

  • PDF

열처리온도에 따른 $SnO_2$/Si 이종접합 태양전지의 전기적 특성 (Electrical characteristics of Sn $O_{2}$Si heterojunction solar cells depending on annealing temperature)

  • 이재형;박용관
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권6호
    • /
    • pp.481-489
    • /
    • 1994
  • The $SnO_2$/(n)Si solar cell was fabricated by electron beam evaporation method, and their properties were investigated. In proportion to increase of substrate and annealing temperature, the conductivity of $SnO_2$ thin film was increased, but its optical transmission decreases because of increasing optical absorption of free electrons in the thin film. $SnO_2$/Si Solar cell characteristics were improved by annealing, but the solar cells was deteriorated by heat treatment above 500[.deg. C]. The optimal outputs of $SnO_2$/Si solar cell through above investigations were $V_{\var}$:350[mV], $J_{sc}$ ;16.53[mA/c $m^{2}$], FF;0.41, .eta.=4.74[%]

  • PDF

Inductively Coupled Plasma를 이용한 SnO 박막의 식각 특성 연구 (Study of Dry Etching of SnO thin films using a Inductively Coupled Plasma)

  • 김수곤;박병옥;이준형;김정주;허영우
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.98-103
    • /
    • 2016
  • The dry etching characteristics of SnO thin films were investigated using inductively coupled plasma (ICP) in Ar, $CF_4$, $Cl_2$ chemistries. the SnO thin films were deposited by reactive rf magnetron sputtering with Sn metal target. In order to study the etching rates of SnO, the processing factors of processing pressure, source power, bias power, and etching gas were controlled. The etching behavior of SnO films under various conditions was obtained and discussed by comparing to that of $SiO_2$ films. In our results, the etch rate of SnO film was obtained as 94nm/min. The etch rates were mainly affected by physical etching and the contribution of chemical etching to SnO films appeared relatively week.

Characteristic of Al-In-Sn-ZnO Thin Film Prepared by FTS System with Hetero Targets

  • Hong, Jeong-Soo;Kim, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.76-79
    • /
    • 2011
  • In order to improve efficiency and make a new material thin film, we prepared the Al-In-Sn-ZnO thin film on a glass substrate at room temperature using a Facing Target Sputtering (FTS) system. The FTS system was designed to array two targets that face each other. Two different kinds of targets were installed on the FTS system. We used an ITO ($In_2O_3$ 90wt%, $SnO_2$ 10wt%) target and an AZO (ZnO 98wt%, $Al_2O_3$ 2wt%) target. The AIZTO films were deposited using different applied powers to the targets. The as-deposited AIZTO thin films were investigated using a UV/VIS spectrometer, an X-ray diffratometer (XRD), and Energy Dispersive X-ray spectroscopy (EDX).