• Title/Summary/Keyword: $Si_3\

Search Result 14,664, Processing Time 0.037 seconds

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film (SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4468-4472
    • /
    • 2010
  • SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

Direct Bonding of Si || SiO2/Si3N4 || Si Wafer Pairs With a Furnace (전기로를 이용한 Si || SiO2/Si3N4 || Si 이종기판쌍의 직접접합)

  • Lee, Sang-Hyeon;Lee, Sang-Don;Seo, Tae-Yun;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.117-120
    • /
    • 2002
  • We investigated the possibility of direct bonding of the Si ∥SiO$_2$/Si$_3$N$_4$∥Si wafers for Oxide-Nitride-Oxide(ONO) gate oxide applications. 10cm-diameter 2000$\AA$-thick thermal oxide/Si(100) and 500$\AA$-Si$_3$N$_4$LPCVD/Si (100) wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were premated wish facing the mirror planes by a specially designed aligner in class-100 clean room immediately. Premated wafer pairs were annealed by an electric furnace at the temperatures of 400, 600, 800, 1000, and 120$0^{\circ}C$ for 2hours, respectively. Direct bonded wafer pairs were characterized the bond area with a infrared(IR) analyzer, and measured the bonding interface energy by a razor blade crack opening method. We confirmed that the bond interface energy became 2,344mJ/$\m^2$ when annealing temperature reached 100$0^{\circ}C$, which were comparable with the interface energy of homeogenous wafer pairs of Si/Si.

Synthesis and Mechanical Properties of nc-TiN/a-Si$_3$N$_4$ Nanocomposite Coating Layer (나노복합체 nc-TiN/a-Si$_3$N$_4$ 코팅막의 합성 및 기계적 성질)

  • 김광호;윤석영;김수현;이건환
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.133-140
    • /
    • 2002
  • The Ti-Si-N coating layers were synthesized on SKD 11 steel substrate by a DC reactive magnetron co-sputtering technique with separate Ti and Si targets. The high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses for the coating layers revealed that microstructure of Ti-Si-N layer was nanocomposite, consisting of nano-sized TiN crystallites surrounded by amorphous $Si_3$$N_4$ phase. The highest hardness value of about 39 GPa was obtained at the Si content of ~11at.%, where the microstructure had fine TiN crystallites (about 5nm in size) dispersed uniformly in amorphous matrix. As the Si content in Ti-Si-N films increased, the TiN crystallites became from aligned to randomly oriented microstructure, finer, and fully penetrated by amorphous phase. Free Si appeared in the layers due to the deficit of nitrogen source at higher Si content. Friction coefficient and wear rate of the Ti-Si-N coating layer significantly decreased with increase of relative humidity. The self-lubricating tribe-layers such as $SiO_2$ or (OH)$Si_2$ seemed to play an important role in the wear behavior of Ti-Si-N film against steel.

Direct Bonded (Si/SiO2∥Si3N4/Si) SIO Wafer Pairs with Four-point Bending (사점굽힘시험법을 이용한 이종절연막 (Si/SiO2||Si3N4/Si) SOI 기판쌍의 접합강도 연구)

  • Lee, Sang-Hyeon;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.508-512
    • /
    • 2002
  • $2000{\AA}-SiO_2/Si(100)$ and $560{\AA}-Si_3N_4/Si(100)$ wafers, which are 10 cm in diameter, were directly bonded using a rapid thermal annealing method. We fixed the anneal time of 30 second and varied the anneal temperatures from 600 to $1200^{\circ}C$. The bond strength of bonded wafer pairs at given anneal temperature were evaluated by a razor blade crack opening method and a four-point bonding method, respectively. The results clearly slow that the four-point bending method is more suitable for evaluating the small bond strength of 80~430 mJ/$\m^2$ compared to the razor blade crack opening method, which shows no anneal temperature dependence in small bond strength.

Synthesis and Sinteirng of $MoSi_2$ by SHS Process (SHS법에 의한 고온발열체용 $MoSi_2$의 합성 및 소결)

  • 이승재;장윤식;김인술;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1085-1091
    • /
    • 1995
  • Molybdenum disilicide (MoSi2) was synthesized from Mo, MoO3, Si and Al powders by self-propagating high temperature synthesis (SHS). The effect of processing parameters such as Mo/MoO3 molar ratio, Ar gas pressure in the reactor and pressing pressure of compacts in synthesis of MoSi2 were investigated. h-MoSi2 was transformed into t-MoSi2 with increasing the Mo/MoO3 mole ratio, and only t-MoSi2 phase was identified above 3.5 : 1 (molar ratio). The synthesized phases did not change with the variation of Ar gas pressure and pressing pressure of compacts. It was found that the combustion temperature was above 2,50$0^{\circ}C$. The products were separated into MoSi2 (s) and $\alpha$-Al2O3 by the difference of their specific grativities. Bending strength, hardness and density of sintered specimen exhibited 82 MPa, 5.368 GPa and 5.43 g/㎤, respectively.

  • PDF

Nitrogenation of Coal Ash in the Presence of Carbon and Product Distributions of AlN, SiC and $Si_3N_4$ (석탄회의 탄소가 첨가된 질화반응과 AlN, SiC 그리고 $Si_3N_4$의 생성분포)

  • 양현수;홍원표;노재성;서동수;손응권
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.965-970
    • /
    • 1990
  • A nitrogenation of coal ash in the presence of carbon was carried out to examine the effects of reaction temperature, reaction time and carbon composition on the formation of AlN, SiC and Si3N4. Decreasing the particle size increased the formation of AlN and its maximum composition in the product was obtaiend under 1450~150$0^{\circ}C$, 2 hours of reaction time and about 30% of carbon addition(on the basis of sample weight). Compositions of SiC and Si3N4 were distributed to the opposite so that SiC showed a higher composition compared with Si3N4 at a lower temperature, a shorter reaction time and a greater carbon addition.

  • PDF

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.123-130
    • /
    • 1993
  • Dispersed type Al2O3-SiC composite powders were synthesized from Al-isopropoxide (Al(i-OC3H7)3) and Si(OC2H5)4 precursors by hydrolysis of mixed alkoxides and carbothermal reaction method. The characteristics of the synthesized (dispersed type) Al2O3-SiC composite powders were investigated using XRD, SEM, TEM, BET and particle size analyzer. Carbothermal reaction to produce Al2O3-SiC composite was completed in 10h at 135$0^{\circ}C$ on 3~4㎤/s (0.21~0.28cm/s) of H2 flow rate and about 1/1 of carbon/oxides(=SiO2+Al2O3) molar ratio. The synthesized powders were observed to have the mean particle size range of 0.4~1.26${\mu}{\textrm}{m}$ and showed finer particle size with increasing SiC content.

  • PDF

Effect of Alumina Content on the Hot Corrosion of SiC by NaCl and Na2SO4 (NaCl과 Na₂SO₄에 의한 SiC 고온 부식에 미치는 Alumina 첨가량의 영향)

  • 이수영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.625-625
    • /
    • 1991
  • The specimens for the corrosion test were made by hot-pressing of SiC power with 2 wt% Nl2O3 and 10wt% Al2O3 additions at 2000℃ and 2050℃. The specimens were corroded in 37 mole% NaCl and 63 mole% Na2SO4 salt mixture at 1000℃ up to 60 min. SiO2 layer was formed on SiC and then this oxide layer was dissolved by Na2O ion in the salt mixture. The rate of corrosion of the specimen containing 10 wt% Al2O3 was slower than that of the specimen containing 2 wt% Al2O3. This is due to the presence of continuous grain boundary phase in the specimen containing 10 wt% Al2O3. The oxidation of SiC produced gas bubbles at the SiC-SiO2 interface. The rate of corrosion follows a linear rate law up to 50 min. and then was accelerated. This acceleration is due to the disruption oxide layer by the gas evolution at SiC-SiO2 interface. Pitting corrosion has found at open pores and grain boundaries.

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.