DOI QR코드

DOI QR Code

Synthesis of Tris(silyl)methanes by Modified Direct Process


Abstract

Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Keywords

References

  1. Synthesis of Organosilicon Monomers Petrov, A. D.;Mironov, V. F.;Ponomarenko, V. A.;Chernyshev, E. A.
  2. Organohalosilanes, Precursors to Silicones Voorhoeve, R. J. H.
  3. Catalyzed Direct Reactions of Silicon Lewis, K. M.;Rethwisch, D. G.
  4. Comprehensive Handbook on Hydrosilylation Marciniec, B.
  5. Chemistry and Technology of Silicones Noll, W.
  6. J. Am. Chem. Soc. v.67 Rochow, E. G.
  7. US Patent 2,380,995;Chem. Abstr. v.39 Rochow, E. G.
  8. US Patent 2,380,996;Chem. Abstr. v.39 Rochow, E. G.;Patnode, W. I.
  9. Chem. Ber. v.91 Muller, R.;Seitz, G.
  10. US Patent 2,381,000;US Patent 2,381,002;Chem. Abst. v.39 Patnode, W. I.;Schiessler, R. W.
  11. Carbosilanes: Synthesis and Reactions Fritz, G.;Matern, E.
  12. Organometallics v.12 Jung, I. N.;Yeon, S. H.;Han, J. S.
  13. Organometallics v.12 Yeon, S. H.;Lee, B. W.;Kim, S.-I.;Jung, I. N.
  14. Organomet. Chem. v.516 Yeon, S. H.;Han, J. S.;Yoo, B. R.;Jung, I. N.
  15. Bull. Korean Chem. Soc. v.12 Jung, I. N.;Lee, G.-H.;Yeon, S. H.;Suk, M.-Y.
  16. Organometallics v.16 Han, J. S.;Yeon, S. H.;Yoo, B. R.;Jung, I. N.
  17. Rec. Trav. Chim. v.83 Kolster, B. H.;Vlutger, J. C.;Voorhoeve, R. J. H.
  18. J. Catal. v.91 Frank, T. C.;Kester, K. B.;Falconer, J. L.
  19. J. Catal. v.114 Banholzer, W. F.;Burell, M. C.
  20. J. Catal. v.101 Banholzer, W. F.;Lewis, N.;Ward, W. J.
  21. J. Catal. v.100 Ward, W. J.;Ritzer, A. L.;Carrol, K. M.;Flock, J. W.
  22. J. Am. Chem. Soc. v.70 Bluestein, B. A.
  23. J. Am. Chem. Soc. v.67 Rochow, E. G.
  24. US Patent 2,380,995;Chem. Abstr. v.39 Rochow, E. G.
  25. Bull. Korean Chem. Soc. v.12 Jung, I. N.;Lee, G.-H.;Yeon, S. H.;Suk, M.-Y.
  26. US Patent 5,075,477;Chem. Abstr. v.116 Jung, I. N.;Lee, G.-H.;Yeon, S. H.;Suk, M.-Y.
  27. J. Catal. v.114 Banholzer, W. F.;Burell, M. C.
  28. J. Catal. v.101 Banholzer, W. F.;Lewis, N.;Ward, W. J.
  29. J. Catal. v.100 Ward, W. J.;Ritzer, A. L.;Carrol, K. M.;Flock, J. W.
  30. J. Am. Chem. Soc. v.70 Bluestein, B. A.
  31. J. Chem. Soc. Kaesz, H. D.;Stone, F. G. A.
  32. J. Am. Chem. Soc. v.70 Speier, J. L.;Daubert, B. F.
  33. Doklady Akad. Nauk S.S.S.R. v.108 Mironov, V. F.

Cited by

  1. Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field vol.23, pp.2, 2000, https://doi.org/10.5012/bkcs.2002.23.2.253
  2. Structural and Conformational Studies of ortho-, meta-, and para-Methyl Red upon Proton Gain and Loss vol.26, pp.8, 2000, https://doi.org/10.5012/bkcs.2005.26.8.1170
  3. Poly(thionine)-modified GC Electrode for Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1883
  4. Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster vol.29, pp.10, 2000, https://doi.org/10.5012/bkcs.2008.29.10.1951
  5. Dopamine Molecules on Aucore−Agshell Bimetallic Nanocolloids: Fourier Transform Infrared, Raman, and Surface-Enhanced Raman Spectroscopy Study Aided by Density Functional vol.113, pp.17, 2000, https://doi.org/10.1021/jp810210a
  6. Seven Conformers of Neutral Dopamine Revealed in the Gas Phase vol.4, pp.3, 2000, https://doi.org/10.1021/jz302135h
  7. Gold-Coated Cobalt Ferrite Nanoparticles via Methionine-Induced Reduction vol.119, pp.30, 2000, https://doi.org/10.1021/acs.jpcc.5b03528
  8. Theoretical study of the interactions of a graphene-on-Ni(111) composite with dopamine vol.114, pp.6, 2000, https://doi.org/10.1080/00268976.2015.1123314
  9. Neutral and zwitterionic dopamine species adsorbed on silver surfaces: A DFT investigation of interaction mechanism vol.119, pp.5, 2000, https://doi.org/10.1002/qua.25817
  10. Broadband terahertz signatures and vibrations of dopamine vol.145, pp.18, 2000, https://doi.org/10.1039/d0an00771d
  11. Spectroscopic Signatures and the Cation−π Interaction in Conformational Preferences of the Neurotransmitter Dopamine in Aqueous Solution vol.12, pp.4, 2021, https://doi.org/10.1021/acschemneuro.0c00597