• 제목/요약/키워드: $SiO_x$ thin film

검색결과 467건 처리시간 0.039초

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

유도결합 플라즈마에 의한(Ba, Sr)TiO$_3$ 박막의 식각 특성 연구 (The Study on the Etching Characteristics of (Ba, Sr)TiO$_3$ Film by Inductively Coupled Plasma)

  • 김승범;이영준;염근영;김창일
    • 전자공학회논문지D
    • /
    • 제36D권4호
    • /
    • pp.56-62
    • /
    • 1999
  • 본 연구에서, (Ba,Sr)TiO\sub 3\ 박막이 rf 전력, dc 바이어스 전압 및 반응로 압력과 같은 식각 공정 변수를 변화하여 ICP에서 Cl\sub 2\Ar 가스 혼합비에 따라 식각되었다. 0.2의 Cl\sub 2\/(Cl\sub 2\+Ar) 가스 혼합비, 600 W의 rf 전력,250 V의 dc 바이어스 전압 및 5 mTorr의 반응로 압력의 공정 조건하에서 식각율은 56nm/min이었다. 이때 Pt, SiO\sub 2\ 막에 대한 BST 박막의 식각 선택비는 각각 0.52, 0.43이었다. 식각된 BST 박막의 표면반응은 XPS로 분석하였다. Ba는 BaCl\sub 2\ 와 같은 화학적인 반응과 물리적인 스퍼터링에 의해 제거되었다. Sr의 제거는 Sr과 Cl의 화확적인 반응보다 Ar 이온 충격이 더 효과적이었다. Ti는 TiCl\sub 4\ 와 같은 화학반응에 의해 용이하게 제거되었다. XPS 분석 결과를 비교하기 위하여 SIMS의 분석을 수행하여 비교한 결과 동일한 결론을 도출하였다.

  • PDF

$Cl_2/Ar$ 유도 결합 플라즈마에 의한 gold 박막의 식각특성 (Etching characteristics of gold thin films using inductively coupled $Cl_2/Ar$ plasma)

  • 장윤성;김동표;김창일;장의구;이수재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.7-11
    • /
    • 2002
  • In this study, Au thin films were etched with a $Cl_2/Ar$ gas combination in an in an inductively coupled plasma. The etch properties were measured for different gas mixing ratios of $Cl_2/(Cl_2+Ar)$ while the other process conditions were fixed at rf power (700 W), dc bias voltage (150 V), and chamber pressure (15 mTorr). The highest etch rate of the Au thin film was 3500 $\AA/min$ and the selectivity of Au to $SiO_2$ was 4.38 at a $Cl_2/(Cl_2+Ar)$ gas mixing ratio of 0.2. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is Au-Cl bonding by chemical reaction between Cl and Au. During the etching of Au thin films in $Cl_2/Ar$ plasma, Au-Cl bond is formed, and these products can be removed by the physical bombardment of Ar ions. In addition, Optical emission spectroscopy (OES) were investigated to analyze radical density of Cl and Ar in plasma. The profile of etched Au investigated with scanning electron microscopy (SEM).

  • PDF

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰 (Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure)

  • 김홍래;팜뒤퐁;오동현;박소민;라벨로 마테우스;김영국;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

Dry Etching Characteristics of Zinc Oxide Thin Films in Cl2-Based Plasma

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.60-63
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) and the effect of additive gases in a $Cl_2$-based inductively coupled plasma. The inert gases were argon, nitrogen, and helium. The maximum etch rates were 44.3, 39.9, and 37.9 nm/min for $Cl_2$(75%)/Ar(25%), $Cl_2$(50%)/$N_2$(50%), and $Cl_2$(75%)/He(25%) gas mixtures, 600 W radiofrequency power, 150 W bias power, and 2 Pa process pressure. We obtained the maximum etch rate by a combination of chemical reaction and physical bombardment. A volatile compound of Zn-Cl. achieved the chemical reaction on the surface of the ZnO thin films. The physical etching was performed by inert gas ion bombardment that broke the Zn-O bonds. The highly oriented (002) peak was determined on samples, and the (013) peak of $Zn_2SiO_4$ was observed in the ZnO thin film sample based on x-ray diffraction spectroscopy patterns. In addition, the sample of $Cl_2$/He chemistry showed a high full-width at half-maximum value. The root-mean-square roughness of ZnO thin films decreased to 1.33 nm from 5.88 nm at $Cl_2$(50%)/$N_2$(50%) plasma chemistry.

$Cl_2/BCl_3$/Ar 유도 결합 플라즈마에서 온도에 따른 $ZrO_2$ 박막의 식각 (Temperature Dependence on Dry Etching of $ZrO_2$ Thin Films in $Cl_2/BCl_3$/Ar Inductively Coupled Plasma)

  • 양설;김동표;이철인;엄두승;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.145-145
    • /
    • 2008
  • High-k materials have been paid much more attention for their characteristics with high permittivity to reduce the leakage current through the scaled gate oxide. Among the high-k materials, $ZrO_2$ is one of the most attractive ones combing such favorable properties as a high dielectric constant (k= 20 ~ 25), wide band gap (5 ~ 7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2$/Si structure. During the etching process, plasma etching has been widely used to define fine-line patterns, selectively remove materials over topography, planarize surfaces, and trip photoresist. About the high-k materials etching, the relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Among several etching techniques, we chose the inductively coupled plasma (ICP) for high-density plasma, easy control of ion energy and flux, low ownership and simple structure. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. During the etching process, the wafer surface temperature is an important parameter, until now, there is less study on temperature parameter. In this study, the etch mechanism of $ZrO_2$ thin film was investigated in function of $Cl_2$ addition to $BCl_3$/Ar gas mixture ratio, RF power and DC-bias power based on substrate temperature increased from $10^{\circ}C$ to $80^{\circ}C$. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by scanning emission spectroscope (SEM). The chemical state of film was investigated using energy dispersive X-ray (EDX).

  • PDF

전기도금법에 의해 전착된 BixTey 박막의 전기 및 열전 특성 (Thermoelectric/electrical characterization of electrodeposited BixTey thin films)

  • 유인준;이규환;김양도;임재홍
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.308-308
    • /
    • 2012
  • Electrodeposition of thermoelectric materials, including binary and ternary compounds, have been attracting attentions, because its many advantages including cost-effectiveness, rapid deposition rate, and ease of control their microstructure and crystallinity by adjusting electrodeposition parameters. In this work, $Bi_xTe_y$ films were potentiostatically electrodeposited using Au/Ni(80/20 nm)/Si substrate as the working electrode in solutions consisting of 10mM $TeO_2$ and 1M $HNO_3$ where $Bi(NO_3)_3$ was varied from 2.5 to 10 mM. Prior to electrodeposition potentiostatically, linear sweep voltammograms (LSV) were acquired with a standard three-electrode cell. The $Bi_xTe_y$ films deposited using the electrolyte containing low Bi ions shows p-type conductivity, which might be attributed by the large incorporation of Te phases. Near stoichiometric $Bi_2Te_3$ thin films were obtained from electrolytes containing 5mM $Bi(NO_3)_3$. This film shows the maximum Seebeck coefficient of $-100.3{\pm}12.7{\mu}V/K$. As the increase of Bi ions in electrolytes decreases the Seebeck coefficient and resistivity. The maximum power factor of $336.2{\mu}W/m{\cdot}K^2$ was obtained from the film deposited using the solution of 7.5mM $Bi(NO_3)_3$.

  • PDF

플라즈마 화학 증착법에 의한 $Y_2O_3-StabilzedZrO_2$박막의 제조와 Capacitance-Voltage특성 (Preparation and C-V characteristics of $Y_2O_3-StabilzedZrO_2$ Thin Films by PE MO CVD)

  • 최후락;윤순길
    • 한국재료학회지
    • /
    • 제4권5호
    • /
    • pp.510-515
    • /
    • 1994
  • 플라즈마 화학 증착법으로 (100)p-type Si wafer위에 $Y_2O_3$-Stabilzed $ZrO_2$박막을 증착하였다. 반응 기체로는 zirconium triflouracethylacetonate[Zr(tfacac) $[Zr(tfacac)_4]$, tri(2.2.6.6 tetramethy1-3, 5-heptanate) yttrium $[Y(DPM)_3]$과 oxygen gas를 사용하였다. X-ray diffraction(XRD)과 fourier Particle induced x-ray emission(PIXE)을 통하여 $Y(DPM)_3$ bubbling temperature가 $160^{\circ}C, 165^{\circ}C, 170^{\circ}C$일때 $Y_2O_3$함량이 12.1mo1%, 20.4mol%, 31.6mol%임을 알 수 있었다. C-V측정에서 $Y(DPM)_3$ bubbling temperature가 증가함에 따라 flat band voltage가 더욱더 음의 방향으로 이동하였다.

  • PDF

RF-magnetron sputtering 방법으로 제조한 $BaTa_2O_6$ 박막의 특성과 응용에 관한 연구 (Study on the characteristics and application of the $BaTa_2O_6$ films prepared by rf-magnetron sputtering technique)

  • 남태성;송만호;이윤희;한택상;오명환;정관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1133-1136
    • /
    • 1995
  • RF-magnetron sputtering 방법으로 형성한 $BaTa_2O_6$의 공정변수에 따른 전기, 광학적 특성변화를 관찰하여 $BaTa_2O_6$ 박막의 TFELD(thin film electroluminescent display) 절연막으로서 응용 가능성을 연구하였다. $BaTa_2O_6$ 박막의 유전특성은 증착시의 $O_2$ 함량과 sputtering 압력의 변화에는 큰 영향을 받지 않으나 기판온도에는 영향을 받는 것으로 확인되었다. 이들 공정변수를 가변하여 실험한 결과, $BaTa_2O_6$ 박막 형성의 최적조건으로 플라즈마 압력을 6 mtorr, sputtering gas 내의 $O_2$ 혼합비율은 40%, 기판온도는 $100^{\circ}C$로 결정하였다. 이상의 조건에서 제조된 $BaTa_2O_6$ 박막은 10.2 ${\mu}C/cm^2$의 매우 우수한 성능지수를 보였다. 이상의 $BaTa_2O_6$ 박막을 하부절연층으로, 절연파괴강도가 높은 $SiO_xN_y$를 상부 절연층으로 사용하여 제조된 EL 소자는 1 kHz, 삼각파 구동시 발광 임계전압은 약 32 volts, 최대휘도는 54 $cd/m^2$으로 측정되었다.

  • PDF