• Title/Summary/Keyword: $SiO_x$ thin film

Search Result 467, Processing Time 0.03 seconds

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Properties with Ca Substitutional Contents of ST Ceramic Thin Film (ST 세라믹 박막의 Ca 치환량에 따른 특성)

  • Oh, Y.C.;Kim, J.S.;Cho, C.N.;Shin, C.G.;Song, M.J.;Cho, W.S.;So, B.M.;Kim, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.160-161
    • /
    • 2005
  • The $(Sr_{1-x}Ca_x)TiO_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/$SiO_2$/Si) using RF sputtering method with substitutional contents of Ca. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75$[{\AA}/min]$. The dielectric constant was increased with increasing the substitutional contents of Ca, while it was decreased if the substitutional contents of Ca exceeded over 15[mol%]. All SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency is observed above 200[kHz].

  • PDF

Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films (SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Jo, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.85-88
    • /
    • 2003
  • $Sr_xBa_{1-x}Nb_2O_6$(SBN, $025{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in Ar/$O_2$ atmosphere. SBN30 thin film of 500 ${\AA}$ was pre-deposited as a seed layer on Pt(l00)/$TiO_2$/$SiO_2$/Si substrate followed by SBN60 deposition up to 4500 ${\AA}$ in thickness. SBN60/SBN30 layer was deposited at different Oxygen amount of 0, 8.1, 17, and 31.8 sccm, respectively. The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. The crystal structure and the electric properties depended on the Oxygen amount, heating temperature and was the best at O2 = 8.1 seem, $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was 13 ${\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film (SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석)

  • Han, Doug-Young;Park Klepeis, Jae-Hyun;Lee, Yoon-Joo;Lee, Jung-Hyun;Kim, Soo-Ryong;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.

Characteristics of TiO2 Thin Films Fabricated by R.E, Magnetron Sputtering (R.F Magnetron Sputtering법으로 제조한 TiO2 박막의 특성)

  • Chu Y. H.;Choi D. K.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.821-827
    • /
    • 2004
  • Titanium oxide thin films were prepared on Si(100) substrates by R.F. magnetron reactive sputtering at $30\sim200watt$ R.F power range, and annealed at $600^{\circ}C\sim800^{\circ}C$ for 1 hour. The properties of $TiO_2$ thin films were analyzed using x-ray, ${\alpha}-step$, ellipsometer, scanning electron microscopy, and FT-IR spectrometer. Upon in-situ depositions, the initial phase of $TiO_2$ thin film showed non-crystalline phase at R.F. power $30\sim100$ watt. The crosssection of $TiO_2$ thin films were sbserved to be the columnar structure. With the increasing R.F power and annealing temperature, the grain size, crystallinity, refractive index, and void size of titanium oxides showed a tended to increase. The FT-IR transmittance spectra of titanium oxide thin films have the obsorption band of Ti-O bond, Si-O bond, Si-O-Ti bond and O-H bond. With the increase of R.F. power and annealing temperature, these films have the stronger bond structures. It is considered that such a phenomena is due to phase transition and good crystallinity

Modelling of Grain Boundary in Polysilicon Film for Photodetector Through Current-Voltage Analysis (광검출기용 다결정 실리콘 박막의 전도특성 분석을 통한 결정립계의 모형화)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • Grain boundaries play a major role in determining device performance, particularly of polysilicon-based photodetectors. Through the post-annealing of as-deposited polysilicon and then, the analysis of electric behavior for a metal-polysilicon-metal (MSM) photodetector, we were able to identify the influence of grain boundaries. A modified model of polysilicon grain boundaries in the MSM structure is presented, which uses a crystalline-interfacial layer-SiOx layer- interfacial layer-crystalline system that is similar to the Si-SiO2 system in MOS device. Hydrogen passivation was achieved through a hydrogen ion implantation process and was used to passivate the defects at both interfacial layers. The thin SiOx layer at the grain boundary can enhance the photosensitivity of an MSM photodetector by decreasing the dark current and increasing the light absorption.

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells (고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성)

  • Kim, Sungheon;Kim, Taeyong;Jeong, Sungjin;Cha, Yewon;Kim, Hongrae;Park, Somin;Ju, Minkyu;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

Dielectric properties of ${Ta_2}{O_5}$ thin film capacitor with $SnO_2$ thin film underlayer ($SnO_2$ 박막을 이용한 ${Ta_2}{O_5}$박막 커패시터의유전특성)

  • Kim, Jin-Seok;Jeong, Gang-Min;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.759-766
    • /
    • 1994
  • Our investigation aimed to reduce the leakage current of $Ta_2O_5$ thin film capacitor by layering SnOz thin film layer under Ta thin film, thereby supplying extra oxygen ions from the $SnO_{2}$ underlayer to enhance the stoichiometry of $Ta_2O_5$ during the oxidation of Ta thin film. Tantalum was evaporated by e-beam or sputtered on p-Si wafers with various deposition temperatures and was oxidized by dry--oxygen at the temperatures between $500^{\circ}C$ and $900^{\circ}C$. Aluminum top and bottom electrodes were formed to make Al/$Ta_2O_5$/p-Si/Al or $Al/Ta_2O_5/SnO_2$p-Si/AI MIS type capacitors. LCR meter and pico-ammeter were used to measure the dielectric constants and leakage currents of the prepared thm film capacitors. XRD, AES and ESCA were employed to confirm the crystallization of the thin f~lm and the compositions of the films. Dielectric constant of $Ta_2O_5$ thin film capacitor with $SnO_{2}$ underlayer was found to be about 200, which is about 10 times higher than that of $Ta_2O_5$ thin film capacitor without $SnO_{2}$ underlayer. In addition, higher oxidation temperatures increased the dielectric constants and reduced the leakage current. Higher deposition temperature generally gave lower leakage current. $Ta_2O_5/SnO_2$ capacitor deposited at $200^{\circ}C$ and oxidized at $800^{\circ}C$ showed significantly lower leakage current, $10^{-7}A/\textrm{cm}^2$ at $4 \times 10^{5}$V/cm, compared to the one without $SnO_{2}$ underlayer. XRD showed that $Ta_2O_5$ thin film was crystallized above $700^{\circ}C$. AES and ESCA showed that initially the $SnO_{2}$, underlayer supplied oxygen ions to oxidize the Ta layer, however, Sn also diffused into the Ta thin film layer to form a new $Ta_xSn_YO_Z$ , ternary oxide layer after all.

  • PDF

The Study of the Etch Characteristics of the TaN Thin Film Using an Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 TaN 박막의 건식 식각 특성 연구)

  • Um, Doo-Seung;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.251-255
    • /
    • 2009
  • In this study, the plasma etching of the TaN thin film with $O_2/BCl_3$/Ar gas chemistries was investigated. The equipment for the etching was an inductively coupled plasma (ICP) system. The etch rate of the TaN thin film and the selectivity of TaN to $SiO_2$ and PR was studied as a function of the process parameters, including the amount of $O_2$ added, an RF power, a DC-bias voltage and the process pressure. When the gas mixing ratio was $O_2$(3 sccm)/$BCl_3$(6 sccm)/Ar(14 sccm), with the other conditions fixed, the highest etch rate was obtained. As the RF power and the dc-bias voltage were increased, the etch rate of the TaN thin film was increased. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical states of the surface of the TaN thin film.