DOI QR코드

DOI QR Code

Modelling of Grain Boundary in Polysilicon Film for Photodetector Through Current-Voltage Analysis

광검출기용 다결정 실리콘 박막의 전도특성 분석을 통한 결정립계의 모형화

  • Lee, Jae-Sung (Division of Renewable Energy & Semiconductor Engineering, Uiduk University)
  • 이재성 (위덕대학교 신재생에너지반도체공학부)
  • Received : 2020.03.09
  • Accepted : 2020.04.01
  • Published : 2020.07.01

Abstract

Grain boundaries play a major role in determining device performance, particularly of polysilicon-based photodetectors. Through the post-annealing of as-deposited polysilicon and then, the analysis of electric behavior for a metal-polysilicon-metal (MSM) photodetector, we were able to identify the influence of grain boundaries. A modified model of polysilicon grain boundaries in the MSM structure is presented, which uses a crystalline-interfacial layer-SiOx layer- interfacial layer-crystalline system that is similar to the Si-SiO2 system in MOS device. Hydrogen passivation was achieved through a hydrogen ion implantation process and was used to passivate the defects at both interfacial layers. The thin SiOx layer at the grain boundary can enhance the photosensitivity of an MSM photodetector by decreasing the dark current and increasing the light absorption.

Keywords

References

  1. D. R. Kim, C. H. Lee, J. M. Weisse, I. S. Cho, and X. Zheng, Nano Lett., 12, 6485 (2012). [DOI: https://doi.org/10.1021/nl3041492]
  2. N. Sharma, M. Hooda, and S. K. Sharma, J. Mater., 2014, 1 (2014). [DOI: https://doi.org/10.1155/2014/954618]
  3. M. Furuta, H. Satani, T. Terashita, T. Tamura, and Y. Tsuchihashi, Jpn. J. Appl. Phys., 41, 1259 (2002). [DOI: https://doi.org/10.1143/JJAP.41.1259]
  4. R. Pownall, G. Yuan, T. W. Chen, P. Nikkel, and K. L. Lear, IEEE Photonics Technol. Lett., 19, 513 (2007). [DOI: https://doi.org/10.1109/LPT.2007.893573]
  5. N. H. Nickel, Semicond. Semimetals, 61, 83 (1999). [DOI: https://doi.org/10.1016/S0080-8784(08)62706-4]
  6. D. S. Kim, J. the Institute of Electronics Engineers of Korea, 39, 29 (2002).
  7. K. von Maydell and N. H. Nickel, Appl. Phys. Lett., 90, 132117 (2007). [DOI: https://doi.org/10.1063/1.2716348]
  8. S. Honda, T. Mates, M. Ledinsky, A. Fejfar, J. Kocka, T. Yamazaki, Y. Uraoka, T. Fuyuki, H. Boldyryeva, A. Mackova, and V. Perina, Sol. Energy, 80, 653 (2006). [DOI: https://doi.org/10.1016/j.solener.2005.10.013]
  9. S. Oyama, T. Hashizume, and H. Hasegawa, Appl. Surf. Sci., 190, 322 (2002). [DOI: https://doi.org/10.1016/S0169-4332(01)00902-3]
  10. F. Taghibakhsh, I. Khodami, and K. S. Karim, IEEE Trans. Electron Devices, 55, 337 (2008). [DOI: https://doi.org/10.1109/TED.2007.911094]
  11. J. S. Lee and K. K Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 276 (2017). [DOI; https://doi.org/10.4313/JKEM.2017.30.5.276]
  12. M. Mekhalfa, B. Zaidi, B. Hadjoudja, B. Chouial, and A. Chibani, Surf. Eng., 36, 29 (2018). [DOI: https://doi.org/10.1080/02670844.2018.1536377]
  13. H. J. Park, S. Bae, S. J. Park, J. Y. Hyun, C. H. Lee, D. Choi, D. Kang, H. Han, Y. Kang, H. S. Lee, and D. Kim, RSC Adv., 9, 23261 (2019). [DOI: https://doi.org/10.1039/C9RA03560E]
  14. H. Watanabe, IEEE Trans. Electron Devices, 54, 38 (2007). [DOI: https://doi.org/10.1109/TED.2006.887212]
  15. W. Eccleston, Microelectron. Eng., 48, 105 (1999). [DOI: https://doi.org/10.1016/s0167-9317(99)00348-2]
  16. D. M. Kim, A. N. Khondker, S. S. Ahmed, and R. R. Shah, IEEE Trans. Electron Devices, 31, 480 (1984). [DOI: https://doi.org/10.1109/T-ED.1984.21554]
  17. C. R. Helms and E. H. Poindexter, Rep. Prog. Phys., 57, 791 (1994). [DOI: https://doi.org/10.1088/0034-4885/57/8/002]
  18. H. C. Card and W. Hwang, IEEE Trans. Electron Devices, 27, 700 (1980). [DOI: https://doi.org/10.1109/T-ED.1980.19925]
  19. G. J. Korsh and R. S. Muller, Solid-State Electron., 21, 1045 (1978). [DOI: https://doi.org/10.1016/0038-1101(78)90183-1]