DOI QR코드

DOI QR Code

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells

고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성

  • Kim, Sungheon (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jeong, Sungjin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cha, Yewon (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Park, Somin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2021.11.25
  • Accepted : 2022.02.07
  • Published : 2022.03.25

Abstract

The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구(n-TOPCon 효율 최적화 pn 접합 형성을 위한 붕소(boron) 도핑(doping) 장비기술개발 소재부품/개발패 키지형 사업, 20016058), 2014년도 산업통상자원부 '산업혁신인재성장지원사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(2021년 차세대 디스플레이 공정·장비·소재 전문인력 양성사업, 과제번호 : P0012453).

References

  1. Mitra, S., Ghosh, H., Saha, H., and Ghosh, K., 2019, "Recombination analysis of tunnel oxide passivated contact solar cells", IEEE Trans Electron Devices, 66 (3), 1368-1376. https://doi.org/10.1109/ted.2018.2890584
  2. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., and Matsubara, N., et al., 2014, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell", IEEE J. Photovolt., 4(6), 1433-1435. https://doi.org/10.1109/JPHOTOV.2014.2352151
  3. Larionova, Y., Turcu, M., Reiter, S., Brendel, R., Tetzlaff, D., Krugener, J., Wietler, T., Hohne, U., Kahler, J.D., and Peibst, R., 2017, "On the recombination behavior of p+-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces", Phys. Status. Solidi Appl. Mater. Sci., 214(8), 1700058. https://doi.org/10.1002/pssa.201700058
  4. Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y., 2019, "Solar cell efficiency tables (version 54)", Prog. Photovoltaics Res. Appl., 27(7), 565-575 https://doi.org/10.1002/pip.3171
  5. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y., 2018, "Solar cell efficiency tables (version 53)", Prog. Photovoltaics Res. Appl., 27(1), 3-12.
  6. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K., 2017, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%", Nat. Energy, 2, 17032 https://doi.org/10.1038/nenergy.2017.32
  7. Chowdhury, S., Kumar, M., Dutta, S., Park, J.S., Kim, J.M., Kim, S.Y., Ju, M.G., Kim, Y.K., Cho, Y.H., Cho, E.C., and Yi, J.S., 2019, "High-efficiency crystalline silicon solar cells: a review", New. Renew. Energy, 15(3), 36-45. https://doi.org/10.7849/ksnre.2019.3.15.3.036
  8. Richter, A., Benick, J., Feldmann, F., Fell, A., Hermle, M., and Glunz, S.W., 2017, "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation", Sol. Energy Mater. Sol. Cells, 173, 96-105. https://doi.org/10.1016/j.solmat.2017.05.042
  9. Feldmann, F., Bivour, M., Reichel, C., Steinkemper, H., Hermle, M., and Glunz, S.W., 2014, "Tunnel oxide passivated contacts as an alternative to partial rear contacts", Sol. Energy Mater. Sol. Cells, 131, 46-50. https://doi.org/10.1016/j.solmat.2014.06.015
  10. Tao, Y., Upadhyaya, V., Jones, K., and Rohatgi, A., 2016, "Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity", AIMS Mater. Sci., 3(1), 180-189. https://doi.org/10.3934/matersci.2016.1.180
  11. Fong, K.C., Kho, T.C., Liang, W.S., Chong, T.K., Ernst, M., Walter, D., Stocks, M., Franklin, E., McIntosh, K., and Blakers, A., 2018, "Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation", Sol. Energy Mater. Sol. Cells, 186, 236-242. https://doi.org/10.1016/j.solmat.2018.06.039
  12. Limodio, G., Yang, G., Groot, Y.D., Procel, P., Mazzarella, L., Weber, A.W., Isabella, O., and Zeman, M., 2020, "Implantation-based passivating contacts for crystalline silicon front/rear contacted solar cells", Prog. Photovoltaics Res. Appl., 28(5), 403-416. https://doi.org/10.1002/pip.3250
  13. Yan, D., Phang, S.P., Wan, Y., Samundsett, C., Macdonald, D., and Cuevas, A., 2019, "High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion", Sol. Energy Mater. Sol. Cells, 193, 80-84. https://doi.org/10.1016/j.solmat.2019.01.005
  14. Kang, J., Liu, W., Allen, T., Bastiani, M.D., Yang, X., and Wolf, S.D., 2020, "Intrinsic silicon buffer layer improves hole-collecting poly-Si passivating contact" Adv. Mater. Interfaces, 7(13), 2000188. https://doi.org/10.1002/admi.202000188
  15. Li, S., Pomaska, M., Hoss, J., Lossen, J., Qiu, K., Hong, R., Finger, F., Rau, U., and Ding, K., 2020, "High-quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min", Prog. Photovoltaics Res. Appl., 29(1), 16-23
  16. Nasebandt, L., Hubner, S., Min, B., Hollemann, C., Dippell, T., Wohlfart, P., Peibst, R., and Brendel, R., 2020, "Firedonly passivating poly-Si on oxide contacts with DC-sputtered in-situ phosphorous-doped silicon layers" proceding of 37th European photovoltaic solar energy conference and exhibition, 184-187.
  17. Hoss, J., Baumann, J., Berendt, M., Graupner, U., Kohler, R., Lossen, J., Thumsch, M., and Schneiderlochner, E., 2019, "Sputtering of silicon thin films for passivated contacts", proceding of 15th international conference on concentrator photovoltaic systems (CPV-15), AIP Publishing LLC, 2147(1), 040007.
  18. Tao, K., Li, Q., Hou, C., Jiang, S., Wang, J., Jia, R., Sun, Y., Li, Y., Jin, Z., and Liu, X., 2017, "Application of a-Si/μc-Si hybrid layer in tunnel oxide passivated contact n-type silicon solar cells", Sol. Energy, 144, 735-739. https://doi.org/10.1016/j.solener.2017.01.061
  19. Park, H.J., Bae, S.H., Park, S.J., Hyun, J.Y., Lee, C.H., Choi, D.J., Kang, D.K., Han, H.B., Kang, Y.M., Lee, H.S., and Kim, D.H., 2019, "Role of polysilicon in poly-Si/SiO:X passivating contacts for high-efficiency silicon solar cells", RSC Advances, 9(40), 23261-23266. https://doi.org/10.1039/c9ra03560e
  20. Bonilla, R.S., Reichel, C., Hermle, M., and Wilshaw, P.R., 2013, "Electric field effect surface passivation for silicon solar cells", Solid State Phenomena, 205-206, 346-351 https://doi.org/10.4028/www.scientific.net/SSP.205-206.346
  21. Yan, D., Cuevas, A., Bullock, J., Wan, Y., and Samundsett, C., 2015, "Phosphorus-diffused poly silicon contacts for solar cells", Sol. Energy Mater. Sol. Cells, 142, 75-82 https://doi.org/10.1016/j.solmat.2015.06.001
  22. Park, H.J., Lee, Y.S., Park, S.J., Bae, S.H., Kim, S.H., Oh, D.H., Park, J.J., Kim, Y.G., Guim, H.U., and Kang Y.M., et al., 2019, "Tunnel oxide passivating electron contacts for high-efficiency n-type silicon solar cells with amorphous silicon passivating hole contacts", Prog. Photovoltaics Res. Appl., 27(12), 1104-1114 https://doi.org/10.1002/pip.3190
  23. Yan, D., Cuevas, A., Phang, S.P., Wan, Y., and Macdonald, D., 2018, "23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films", Appl. Phys. Lett., 113(6), 061603. https://doi.org/10.1063/1.5037610
  24. Truong, T.N., Yan, D., Nguyen, C.P.T., Kho, T., Guthrey, H., Seidel, J., Al-Jassim, M., Cuevas, A., Macdonald, D., and Nguyen, H.T., 2021, "Morphology, microstructure, and doping behaviour: A comparison between different deposition methods for poly-Si/SiOx passivating contacts", Prog. Photovolt., 29(7), 857-868. https://doi.org/10.1002/pip.3411
  25. Lee, C.H., Park, H.J., Song, H.Y., Lee, H.J., Ohshita, Y., Kang, Y.M., Lee, H.S., and Kim, D.H., 2019, "Passivation properties of phosphorus doped amorphous silicon layers for tunnel oxide carrier selective contact solar cell", Current Photovoltaic Research, 7(4), 125-129. https://doi.org/10.21218/CPR.2019.7.4.125
  26. Kim, H.H., Bae, S.H., Ji, K.S., Kim, S.M., Yang, J.W., Lee, C.H., Lee, K.D., Kim, S.T., Kang, Y.M., Lee, H.S., and Kim, D.H., 2017, "Passivation properties of tunnel oxide layer in passivated contact silicon solar cells", Appl. Surf. Sci., 409, 140-148. https://doi.org/10.1016/j.apsusc.2017.02.195