• Title/Summary/Keyword: $Sb_2$$O_3$ addition

Search Result 104, Processing Time 0.032 seconds

Electrical properties of lead free (Na,K,Li)(Nb,Sb,Ta)$O_3$ ceramics with $MnO_2$ addition ($MnO_2$ 첨가량에 따른 비납계 (Na,K,Li)(Nb,Sb,Ta)$O_3$ 세라믹스의 전기적특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Shin, Dong-Jin;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1487-1488
    • /
    • 2011
  • Electrical properties and microstructure were investigated on the effects of $MnO_2$ and the lead-free $(Na_{0.44}K_{0.52}Li_{0.04})(Nb_{0.83}Sb_{0.07}Ta_{0.1})O_3$ ceramics with the addition of $MnO_2$ were fabricated by a conventional mixed oxide method. A gradual change in the crystal and microstructure was observed with the increase of $MnO_2$ addition. For the NKN-LST-xmol%$MnO_2$ sintered at $1100^{\circ}C$, bulk density increased with the addition of $MnO_2$ and showed maximum value at addition 1.0mol% of $MnO_2$. Curie temperature of the NKN-LST ceramics slightly decreased with adding $MnO_2$. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased below 0.25mol% of $MnO_2$ addition, which might be due to the increase in density. The high piezoelectric properties = 145 pC/N, electromechanical coupling factor = 0.421 and dielectric constant = 2883 were obtained for the NKN-LST-0.25mol%$MnO_2$ sintered at $1100^{\circ}C$ for 4h.

  • PDF

The Non-Linear Characteristics of ZnO Devices. (ZnO 소자의 비직선 특성)

  • Hong, Kyung-Jin;Chon, Kyung-Nam;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.43-46
    • /
    • 2001
  • The ZnO devices using semiconductor properties, to include $MnO_2$, $Y_2O_3$ and other material, was fabricated by $Sb_2O_3$ mol ratio from 1 to 4 [mol%]. The non-linearity factor was calculated by setting current to be $1[mA/cm^2]$ and $10[mA/cm^2]$. The spinel structure was fonned by $Sb_2O_3$ addition and it was depressed the ZnO grain formation. The grain growing was controlled by spinel structure that has improved the non-linearity factors. The breakdown voltage characteristics of semiconductor devices to increase with $Sb_2O_3$ was increased in voltage-current. The non-linearity value of ZnO semiconductor devices was 45 over.

  • PDF

Microstructure of ZnO Varistors with Various Additives (다양한 첨가 성분을 함유한 ZnO 바리스터의 미세구조)

  • Lee, Hoon;Cho, Sung-Gurl;Kim, Chang-Jo;Kim, Hyung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1323-1330
    • /
    • 1995
  • The effects of various additives on the microstructures of sintered ZnO varistors were examined. Bi2O3, Sb2O3 and Cr2O3 were added to ZnO step by step to identify the effect of each component. The specimens were prepared by sintering at 110$0^{\circ}C$ and 120$0^{\circ}C$ in ambient atmosphere. In ZnO-Bi2O3-Sb2O3 ternary system, decrease of averge grain size due to antimony oxide addition depends on sintering temperature as well as Bi2O3 content. When Sb2O3 was partly or completely replaced by Cr2O3, grain size was further reduced. A significant amount of pyrochlore phase which was not transformed to spinel and Bi2O3-rich liquid phase seemed to remain during sintering at 110$0^{\circ}C$. Unlike ZnO-Bi2O3-Sb2O3 system, the $\alpha$-spinel phase containing significant amount of Cr did not transform to pyrochlore during furnace cooling. Fine spinel particles around 1${\mu}{\textrm}{m}$ size were ovserved within ZnO grains and grain boundaries, which were believed to be responsible for grain-growth inhibition in ZnO-Bi2O3-Sb2O3.

  • PDF

Effect of MnO2 Addition on Dielectric and Piezoelectric Properties of 0.985[Li0.04(Na0.545K0.46)0.96(Nb0.81Ta0.15Sb0.04)]O3 Ceramics (MnO2 첨가가 0.985[Li0.04(Na0.545K0.46)0.96(Nb0.81Ta0.15Sb0.04)]O3+0.015KNbO3 세라믹스의 유전 및 압전 특성에 미치는 영향)

  • Kim, YouSeok;Yoo, JuHyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.361-366
    • /
    • 2014
  • $MnO_2$-doped $0.985[Li_{0.04}(Na_{0.545}K_{0.46})_{0.96}(Nb_{0.81}Ta_{0.15}Sb_{0.04})]O_3+0.015KNbO_3(0.985LNKNTS+0.015KNbO_3)$ lead-free ceramics were fabricated by conventional solid state method to develop excellent dielectric and piezoelectric properties. The result of X-ray diffraction patterns obviously indicated that all of the specimen has pure perovskite structure without secondary phase. In addition, orthorhombic phase and coexistance region of orthorhombic-tetragonal phase (MPB) were observed with amount of $MnO_2$. The optimal values of ${\rho}$=4.70 $g/cm^3$, $d_{33}=238$ pC/N, $k_P=0.46$, $Q_m=121$, ${\varepsilon}_r=849$, and $T_C=225^{\circ}C$ were obtained at 0.01 mol% $MnO_2$ doped $0.985LNKNTS+0.015KNbO_3$ ceramics sintered at $990^{\circ}C$ for 5 h, respectively. Hence, it was indicated that the suitable amount of $MnO_2$ could improve the electrical properties of $0.985[Li_{0.04}(Na_{0.545}K_{0.46})_{0.96}(Nb_{0.81}Ta_{0.15}Sb_{0.04})]O_3+0.015KNbO_3$ ceramics.

Electrical and Piezoelectric Properties of PbLa(Mn,SbTi)$O_3$ceramics as a function of $MnO_2$$_2$addition ($MnO_2$첨가에 따른 PbLa(Mn,SbTi)$O_3$세라믹스의 유전 및 압전특성)

  • 오동언;민석규;윤광희;류주현;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.684-688
    • /
    • 2001
  • The structural, piezoelectric and dynamic range characteristics of modified PbTi $O_3$ceramics were investigated as a function of Mn $O_2$addition. With the increase of Mn $O_2$addition, Curie temperature was decreased. As the increase of Mn $O_2$addition, mechanical quality factor ( $Q_{mt3}$) in the third over tone thickness mode was increased. Dynamic range in the third over tone thickness mode was also increased with the increase of Mn $O_2$addition. The composition ceramics added to 0.075wt% Mn $O_2$showed the best properties for SMD type resonator using third over tone thickness vibration in terms of high Curie temperature more than 31$0^{\circ}C$ and dynamic range of 49.38dB.B.

  • PDF

Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 Ceramics according to the Amount of CuO Addition (CuO첨가에 따른 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 세라믹스의 유전 및 압전특성)

  • Lee, Yu-Hyung;Kim, Do-Hyung;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung;Hong, Jae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.489-494
    • /
    • 2009
  • In this study, In order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics, $0.95(K_{0.5}Na_{0.5})NbO_3-0.05Li(Sb_{0.8}Nb_{0.2})O_3+0.2\;wt%Ag_2O+0.4\;wt%MnO_2+Xwt%CuO$ were investigated as a function of the amount of CuO addition. With increasing the amount of CuO addition, density was increased up to 0.4 wt.% CuO and then decreased above. And also, electro mechanical coupling factor ($k_p$) was decreased. At the 0.4 wt% CuO added specimen sintered at $1020^{\circ}C$, $k_p$, Qm, density, dielectric constant (${\varepsilon}_r$) and $d_{33}$[pC/N] showed the optimal value of $4.37\;g/cm^3$, 0.354, 305, 645, and 144 pC/N respectively.

Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 Ceramics

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.150-154
    • /
    • 2019
  • This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$, which has a rhombohedral-tetragonal phase boundary composition. $MnO_2$ and CuO-added $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$ ceramics sintered at a relatively low temperature of $1020^{\circ}C$ show a pure perovskite phase with no secondary phase. As the addition of $MnO_2$ and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of $MnO_2$.

Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition (Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성)

  • Lee, Gwang-Min;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.555-560
    • /
    • 2014
  • In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.

Dielectric and Piezoelectric Characteristics of the (Na,K)(Nb,Sb)O3 Ceramics as a Function of Na Excess Addition (Na 과잉 첨가에 따른 (Na, K)(Nb, Sb)O3 세라믹스의 유전 및 압전 특성)

  • Seo, Bueong-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.285-289
    • /
    • 2011
  • In this study, lead-free $(K_{0.5}Na_{0.5+X})(Nb_{0.96}Sb_{0.04})O_3+0.2mol%La_2O_3+1.2mol%$ $K_4CuNb_8O_{23}$ (X= 0~0.025) ceramics were fabricated by normal sintering method at $1060^{\circ}C$ for 5 h. Microstructures, piezoelectric and dielectric properties of specimens were investigated with special emphasis in the influence of Na excess addition. The grain size of specimen was slightly decreased with increasing Na content. In the 2 [mol%] Na excess addition of NKNS ceramics, density, electromechanical coupling factor, piezoelectric constant and electromechancal quality factor of specimen were found to reach the optimum values of 4.25 [$g/cm^3$], 0.4357, 154.43 [pC/N] and 580, respectively.

The Effect of V2O5 on the Dielectric and Piezoelectric Characteristics of Pb(Sb1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3Ceramics (V2O5가 Pb(Sb1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr, Ti)O3세라믹스의 유전 및 압전특성에 미치는 영향)

  • 류주현;남승현;이수호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.676-680
    • /
    • 2003
  • In this study, to develop the low temperature sintering ceramics for piezoelectric transformer, PSN-PNN-PZT system ceramics were manufactured as a function of V$_2$O$_{5}$ addition, that is the low melting point oxide. Its dielectric and piezoelectric characteristics were investigated. With increasing the amount of V$_2$O$_{5}$ addition, electromechanical coupling factor(kp) and mechanical quality factor(Qm) were decreased. For piezoelectric transformer application, the 0.1wt% V$_2$O$_{5}$ added specimen sintered at 1,00$0^{\circ}C$ showed the proper value of $\varepsilon$r=1,590, kp=0.51 and Qm=748.m=748.