DOI QR코드

DOI QR Code

Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition

Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성

  • Lee, Gwang-Min (Department of Electrical Engineering, Semyung University) ;
  • Shin, Sang-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2014.07.28
  • Accepted : 2014.08.13
  • Published : 2014.09.01

Abstract

In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.

Keywords

References

  1. F. Azough, M. Wegrzyn, R. Freer, S. Sharma, and D. Hall, J. Eur. Ceram. Soc., 31, 569 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.10.033
  2. R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008). https://doi.org/10.1016/j.jpcs.2008.01.003
  3. L. Chen, H. Fan, M. Zhang, C. Yang, and X. Chen, J. Alloys Compd., 492, 313 (2010). https://doi.org/10.1016/j.jallcom.2009.11.084
  4. C. Zhang, Z. Chen, W. J. Ji, L. Wang, Y. B. Chen, S. H. Yao, S. T. Zhang, and Y. F. Chen, J. Alloys Compd, 509, 2425 (2011). https://doi.org/10.1016/j.jallcom.2010.11.037
  5. B. H. Seo and J. H. Yoo, J. KIEEME, 23, 617 (2010).
  6. R. Zuo, C. Ye, and X. Fang, J. Phys. Chem. Solids, 69, 230 (2008). https://doi.org/10.1016/j.jpcs.2007.08.066
  7. Y. S. Kim, J. H. Yoo, J. I. Hong, and J. Y. Lee, J. KIEEME, 26, 806 (2013).
  8. R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008). https://doi.org/10.1016/j.jpcs.2008.01.003
  9. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  10. Y. Zhao, Y. Zhao, R. Huang, R. Liu, and H. Zhou, Mater. Lett., 75, 146 (2012). https://doi.org/10.1016/j.matlet.2012.02.021
  11. X. Chao, Z. Yang, Z. Li, and Y. Li, J. Alloys Compd., 518, 1 (2012). https://doi.org/10.1016/j.jallcom.2011.11.104
  12. Y. Saito, H. Takao, T. Tani, T. Nonoama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  13. H. Wang, J. Wu, X. Cheng, D. Xiao, and J. Zhu, J. Alloys Compd., 585, 748 (2014). https://doi.org/10.1016/j.jallcom.2013.10.016
  14. J. J. Zhou, J. F. Li, L. Q. Cheng, K. Wang, X. W. Zhang, and Q. M. Wamg, J. Eur. Ceram. Soc., 32, 3575 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.019
  15. J. Du, Z. Xu, B. Deng, R. Chu, X. Yi, L. Zheng, and Y. Li, Ceram. Int., 40, 4319 (2014). https://doi.org/10.1016/j.ceramint.2013.08.098
  16. J. Liu, J. Zhu, X. Li, M. Wang, X. Zhu, J. Zhu, and D. Xiao, Mater. Lett., 65, 948 (2011). https://doi.org/10.1016/j.matlet.2010.12.058
  17. Y. Guo, K. I. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  18. D. Lin, K. W. Kwok, K. H. Lam, and H.L.W. Chan, J. Appl. Phys., 101, 074111 (2007). https://doi.org/10.1063/1.2715486
  19. S. X. Huo, S. L. Yuan, Y. Qiu, Z. Z. Ma, and C. H. Wang, Mater. Lett., 68, 8 (2012). https://doi.org/10.1016/j.matlet.2011.09.081
  20. J. R. Noh and J. H. Yoo, J. Electroceram, 29, 144 (2012). https://doi.org/10.1007/s10832-012-9744-1