MnO₂첨가에 따른 PbLa(Mn,SbTi)O₃세라믹의 유전 및 압전특성

Electrical and Piezoelectric Properties of PbLa(Mn,SbTi)O₃ ceramics as a function of MnO₂ addition

Abstract

The structural, piezoelectric and dynamic range characteristics of modified PbTiO₃ ceramics were investigated as a function of MnO₂ addition. With the increase of MnO₂ addition, Curie temperature was decreased. As the increase of MnO₂ addition, mechanical quality factor (Qm) in the third over tone thickness mode was increased. Dynamic range in the third over tone thickness mode was also increased with the increase of MnO₂ addition. The composition ceramics added to 0.075wt% MnO₂ showed the best properties for SMD type resonator using third over tone thickness vibration in terms of high Curie temperature more than 310°C and dynamic range of 49.38dB.

Key Words : dynamic range, modified PbTiO₃, third over tone thickness mode, SMD type resonator

1. 서론

최근 IT 산업의 급속한 발전에 따라 고주파 소자에 대한 관심이 증대되고 있으며 국내외에서도 핵심 부품 개발이 활발히 진행되고 있다. 핵심부품 중 압전소자의 제작전동을 이용한 세라믹 레조너타이는 수많은 비전도적 기기를 지원하고, 양호한 발전특성을 나타내므로 수백KHz~수십MHz대역의 clock 발생기용으로 FDD, HDD, CDROM 등 컴퓨터 및 주변 기기 등에 널리 이용되고 있다. 세라믹 레조너터는 침착 기준신호의 고주파파에 따라 더욱 주파수대가 높은 소자화 개발되고 있다. 주파수를 높이기 위해서는 두께 전동을 이용해야한다. 두께 전동모드에는 1차, 3차, 5차전동모드 등이 있으며, 주파수는 20MHz 이상 높이기 위해서는 고주파전동모드를 이용해야 한다. 고주파 레조너터용 조성세라믹스는 두께연방의 전기결합계수 k₃가 커야하고, 고주파에서의 손실이 작고 전력도를 높이기 위해 기계적질계수 Qₘ이 커야한다. [1]또한 기능을 용이하게 하기 위해 고장도, 고밀도의 특성을 나타내어야하며, SMD 타입화에 따른 높은 Curie temperature가 요구된다. 에너지트립이 발생하는 3차 전동모드 이용의 저전장구 등 및 기기장치에서 안정된 구동을 위해 높은 전기장구와 반응전장구수에 의한 입하신스비의 최도인 dynamic range가 큰 것이 필요하다. 세라믹 레조너티 조성으로서, 전기기계적결합계수의 이상성이 크고 유리온도가 높고 경사변화율이 작은 Pb₂Ti₃O₁₀ 세라믹스가 각광을 받기 시작하였다.[2] 그러나, 이 조성은 소성사에 고온에서 Curie온도를 지나 하강이 결정적 압경이 커서
Cra 치이 발생하여 소결하기가 매우 어렵기 때문에 이바종을 완화하고자 치환하여인 La를 Pb시러에 {110} Mn, Sb를 Ti시러에 치환시키고, MnO2등의 불순물을 절
가함에 따라 시험을 제작하여 유전력,압전 및 공진
특성을 조사하여 20MHz용 헤드시리아로의 응용가능
성을 조사하고자 한다.

2. 실험

2.1 시험의 제조.

본 실험에서는 최합물 혼합법으로 시험을 제조하
였으며, 실험에 사용된 조성식은 다음과 같다.
Pb1-3x/2La2[(Mn13/5Sb2/5)1ytT1-3y]O3+Zwt%MnO2
(여기서 x는 0.08, y=0.02, z는 0.0~0.2이다.)
조성에 따른 시료의 정확한 물리적 성질은 10~100°C에
대하여, 아세톤을 분산하여 불합을 사용하여 24시
간 동안 혼합 분해한 후 건조하였다. 건조된 시료는
알루미나 도구가로 900°C에서 4시간 동안 하소하였
다. 하소가 끝난 시료를 재분해한 후 PVA (5wt% 수
용액)을 5wt% 절가하여 직경 21 mm 몬터로 1
[ton/urf]의 압력을 가하여 시험하고, 승하강 온도
180°C에서 하소하여 2시간 동안 소결하
었다. 소결된 시편들은 예정 측정을 위해 0.38 mm
두께로 연약한 후 정밀 가공한 다음 표면에 실버 페
이스트로 도포하고 600°C에서 10분간 열처리하였
다. 전극이 형성된 시편은 130°C 실리콘유 속에서
50[kV/cm]의 전류를 10분 동안 임가하여 분극하였
다. 소결된 시편의 조성변화에 따른 소결성을 판단
하기 위하여 공기중에서의 절연과 양속에서의 절연
율 측정하여 비로를 구하였다. 또한 미세구조를 관
찰하기 위해 주사전자 현미경(SEM, RJ Lee Instru
ments)으로 시편의 파단면을 관찰하였다.

표 1 시험의 조성

Table 1 Sample number of specimen as a
function MnO2 addition

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO2 excess wt%</td>
<td>0</td>
<td>0.025</td>
<td>0.05</td>
<td>0.075</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

유전상수의 온도에 따른 특성을 조사하기 위해서 2
0~400°C의 온도 범위내에서 LCR meter (ANDO
AG-4304)로 1kHz에서 정전용량을 측정하여 유전
상수를 구하였고,압전 특성을 나타내는 전기기계적
합계수, 기계적 품질계수 등은 IRE 규정에 따라
Network Analyzer (HP5100)로 공진 및 반공진 주파
수를 측정하여 산출하였다. 표1은 본 실험에서 제작
된 시편의 성질변화를 나타낸 것이다.

2.1 시편의 특성측정

제작한 시편의 압전특성은 HP5100 Network anay-
zer를 이용하여 공진과파와 반공진과파 및 공진
입피터스와 반공진 입피터스를 아래 식에 의하여 IR
E 표준방법에 따라 계산하였다.

\[k_i = \frac{\pi f_e}{f_o} \tan \left(\frac{\pi f_e - f_o}{f_o} \right) \](1)

\[Q_m = \left(\frac{2\pi f_i}{f_m} \right)^{1/2} \frac{C_0 - C_i}{f_0} \](2)

\[k_{33} = \frac{\pi f_e}{f_o} \tan \left(\frac{\pi f_e - f_o}{f_o} \right) \](3)

\[Q_{m3} = \left(\frac{2\pi f_i}{f_m} \right)^{1/2} \frac{C_0 - C_i}{f_0} \](4)

D.R(Dynamic Range)=20Log(\text{Z}_{\text{max}}/\text{Z}_{\text{min}})..........................(5)

여기서, \(k_i \)와 \(Q_m \)는 각각 기본모드에서의 전기기계
결합계수와 기계적 품질계수이며 \(k_{33} \)와 \(Q_{m3} \)는 각
각,3차 전동모드에서의 전기기계 결합계수와 기계적
품질계수이다. \(f_e, f_0 \)는 공진주파수와 반공진주파수, \(Z_m \)은
공진주파수에서의 입피터스, \(C_0 \)는 정전용량이
다.

3. 결과 및 고찰

Fig.3 XRD diffraction angle pattern

그림1 시편의 X-rd회절모양

그림1은 제작된 시편의 X-rd회절모양을 나타낸 것
이다. (002)(200) peak가 분리된 것으로 보아 정방
정주의구소를 나타내고 있다. 각 시편의 정방성(tetrago-
nal)이 1.0238~1.0263으로 순수한 Pb5TiO3의 1.064
보다 상당히 감소하였다. S1 시편에서 a=1.4871A, c=1.526 3A로 가장 큰면방성을 나타내었고, Mn을 첨가함수록 정방성을 감소되었다. 이는 이온반경이 Ti⁺보다 작은 Mn⁺, Mn⁵⁺이 Ti⁺자리에 차곡됨에 따라 평균계피가 감소되어 Goldschmit rule에 따라서, 격자상수 C와 Unit cell volume이 감소하기 때문인다. 그림2는 1225°C에서 소결한 (Pb,La)(Mn,Sb,Ti)O₃ 세라믹의 표면 미세구조를 나타내었다. Mn의함량이 0인 경우 평균입경이 0.93 μm로 가장 미세한 입경특성을 갖고 있었으며, Mn첨가량이 증가함에 따라 점차적으로 평균입경이 증가하는 경향을 나타내었다. 그러나 사이즈의 변화는 그림3에 나타내었다. MnO₂ 첨가에 따른 그레인 사이즈의 변화는 무첨가시의 S1 생물보다 점점 커지는 경향을 보였으면서 연구에서는 0.2 wt% 까지 첨가 하였으나 Pb₁₋ₓₓₓ_x değer의 경우 MnO₂의 excess를 0.2wt% 첨가시 Poling할 때 누설전류가 많이 줄어 들고, 분격이 용이하지 못하였다.

그림4는 MnO₂ 첨가에 따른 밀도의 변화를 나타내었으며, MnO₂ 첨가에 따라 점점 증가하다 S4 생물 경험 7.68로 최고값을 나타내었으며, 이후 MnO₂ 첨가량이 늘수록 점점 감소하는 경향을 나타내었다.

그림3 MnO₂첨가에 따른 그레인 사이즈의 변화
Fig 3. variations of grain size as a function of MnO₂ addition

그림4 MnO₂첨가에 따른 밀도변화
Fig 4. variations of density as a function of MnO₂ addition

그림5에는 MnO₂ 첨가에 따른 Qm와 각각의 변화를 나타내었다. 본 실험에서는(Pb,La)(Mn,Sb,Ti)O₃에 MnO₂ 를 과일로 첨가하여 이 MnO₂ 가 Acceptor로서 작용되는 범위를 설정하도록 하였다. MnO₂는 Mn⁵⁺(0.82A), Mn⁺⁺(0.66A), Mn⁺⁺⁺(0.60A)로
서 각각 사용하며 Mn$^2+$, Mn$^{3+}$로서 사용할 때는 Ti$^{4+}$ (0.88Å) 자리에 치환되어 Acceptor로서 Qm을 증가시 키나 Mn$^{3+}$로서 사용할 때는 역시 Sb$^{3+}$ (0.76Å) 자리에 치환되어 donor로서 Qm을 멀리시키는 역할을 한다. 따라서 Mn$^2+$, Mn$^{3+}$로 사용하면 Qm의 증가
하여 전기저항을 감소시킬 수 있으며 단조내리어
에 유용하게 된다. 이는 Acceptor나 Donor로서 작
용여부는 치환된 양에 크게 의존하며, 온도에 따라
서도 제한 원자가 특성동의 영향이 바뀔 수 있다.
본 실험에서는 MnO$_2$를 0.025wt% 치환시켰을 때 k$_3$가 0.197, Q$_{m3}$가 583으로 가장 높게 나왔는데 이는
Mn$^2+$, Mn$^{3+}$로서 Ti$^{4+}$자리에 치환되어 Accep-
tor로서 작용, 전자는 발생하게 되어 캐리어농도가 증
가하여 k$_3$는 감소 Q$_{m3}$가 증가한 것이라 생각된다.
또한, 0.075wt%이후에는 donor로 작용하여 전자가 발생
하여 전자-정상보상효과에 의해 캐리어농도가 감소,
k$_3$가 감소하고, Q$_{m3}$이 더 현저하게 된다. D.R값이
MnO$_2$를 0.075wt% 치환시킨 S4성품에서 49.38 dB
로 가장 높은 값을 나타내었다.

표 2 MnO$_2$첨가에 따른 3차에서의 양전특성
Table 2 Characteristics of third overtone vibration
mode as a function of MnO$_2$ variation

<table>
<thead>
<tr>
<th>Sample</th>
<th>k_3</th>
<th>Q_{m3}</th>
<th>$D_{R3}(dB)$</th>
<th>c/AD (A)</th>
<th>T_0 (°C)</th>
<th>N_{m3}</th>
<th>f$_m$ (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.258</td>
<td>54.69</td>
<td>15.87</td>
<td>1.0263</td>
<td>328</td>
<td>7078</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>0.197</td>
<td>565.35</td>
<td>54.64</td>
<td>1.0259</td>
<td>331</td>
<td>7103</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.181</td>
<td>442.69</td>
<td>44.41</td>
<td>1.0255</td>
<td>321</td>
<td>7162</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>0.281</td>
<td>278.45</td>
<td>49.38</td>
<td>1.0255</td>
<td>319</td>
<td>7183</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>0.231</td>
<td>332.79</td>
<td>43.38</td>
<td>1.0243</td>
<td>315</td>
<td>7463</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>0.133</td>
<td>321.46</td>
<td>26.97</td>
<td>1.0238</td>
<td>310</td>
<td>7512</td>
<td></td>
</tr>
</tbody>
</table>

그림 5 MnO$_2$첨가에 따른 기계적흡질계수 및
전기기계적합계수
Fig5. k_3 and Q_{m3} as a function of
MnO$_2$ addition

그림 6 MnO$_2$ 첨가에 따른 D.R(Dynamic range)
Fig6. D.R(Dynamic range) as a function of
MnO$_2$ addition

그림 7은 MnO$_2$ 0.075 wt%으로 첨가시켜서 근
본 모드와 3차모드의 임피던스 특성곡선을 나타
내었다. 3차모드의 20MHz음바에서 매우 높은 압전
과 반응된 임피던스차를 나타내었다.

(a) Fundamental mode(specimen S4)

(b) Third overtone mode (specimen S4)

그림 7 1차 및 3차에서의 임피던스특성모형
Fig7. Characteristic curve of Impedance at the
fundamental and third overtone mode
4. 결론

본 연구에서는 Pb_{1-x}La_x(\{Mn_{12}Sb_{23}\},Ti_{1-y})O_{4+y} 2wt %MnO_2 시장에게서 x는 0.08, y=0.02, z=0.05~0.2) 조성 세라믹으로 3차 두께 방향 진동을 이용하여 20MHz 대역의 세라믹 제조에 이용하기 위하여 MnO_2 파 잉 첨가에 따른 경향을 조사하였다. XRD 회절 분석결과 MnO_2를 파임전가 하지 않은 S1생물액에서 방향성이 1.0253으로 가장 높은 이방성을 나타내었으며 이내 감소하는 경향을 나타내었고, 입경의 크기 역시 MnO_2를 파임전가하지 않은 S1에서 0.93nm로 가장 작은 값을 나타내었으며 이내 점가량이 늘수록 증가하는 경향을 나타내었다. 또한, 침강된 MnO_2량이 0.025wt% 일 때 Mn^{7+}, Mn^{5+}로 작용 Q_m3 583으로 가장 높은 값을 나타내었으나 D.R은 k_o 값과 Q_m3 값이 각각 0.281, 278.45 인 S4생물액에서 49.3로 가장 높은 값을 나타내었다. 또한 큐리온도 319℃ SMD타입 허용 가능한 특성을 나타내었다.

감사의 글
This work was supported by Korea Research Foundation (Grant, No KRF-2000-042-E00023) and carried out with the aid of Samsung Electro-Mechanics Co., Ltd.

참고 문헌