• Title/Summary/Keyword: $S_N2$ mechanism

Search Result 753, Processing Time 0.029 seconds

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

Mechanism of the Hydrolysis of Phenyl N-(p-chlorobenzoyl)Chloroformimidate Derivatives in Acid Media (산성용액 중에서 Phenyl N-(p-chlorobenzoyl)chloroformimidate 유도체의 가수분해 반응 메카니즘)

  • Nack-Do Sung;Young-Gu Cheun;Ki-Sung Kwon;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.352-358
    • /
    • 1987
  • Rate constants for the hydrolysis of para-substituted phenyl N-(p-chlorobenzoyl)chloroformimidate (I) derivatives in 1 : 4 dioxane-water at $25^{\circ}C$ have been determined. Rate data, substituent effect $(\rho\>{\rho}^+)$, product analysis and MO calculation indicate that the uncatalyzed reaction proceeds through an $S_N1$ mechanism involving the formation of azocarbonium ion (II) below pH 3.0, and the base-catalyzed reaction proceeds through an $S_N2$ mechanism via transition state (III) above pH 4.0. The relative stability of four peri planar conformational isomers were (E-ap) > (Z-ap) > (E-sp) > (Z-ap), respectively, and the most stable stereo structures shows that the Y-substituted phenyl group $(C_6H_4-Y)$ occupy vertical $(90^{\circ})$ position on the plane of the benzimidochloroformyl group in (E-ap) conformer. The nucleophilic substitution of water molecule occurs by sigma attack to the activatived azomethine carbon atom of (I) derivatives.

  • PDF

The Reactions of Substituted Benzyl Arenesulfonates with N,N-Dimethylaniline (II). Substituent Effects of Benzyl Substrates for Benzyl Arenesulfonates (置換 Benzyl Arenesulfonate 와 N,N-Dimethylanilines와의 反應 (第2報). 核置換 Benzyl Arenesulfonate의 置換基效果)

  • Yoh Soo Dong
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 1975
  • Substituent effects of benzyl substrates for the reaction of substituted benzyl(Z) arenesulfonate(X) with dimethylanilines in (Y) acetone at $35^{circ}$ were studied. The interactions between Z and Y disappeared when changed from electron withdrawing group to releasing group in benzyl substrates. The disappearance of interactions between Z and Y infers change of mechanism from $S_N2 to S_N1$ in substituent Z.

  • PDF

Sn2/E2 Branching in Protic Solvents: A Mechanistic Study

  • Oh, Young-Ho;Im, Suk;Park, Sung-Woo;Lee, Sung-Yul;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1535-1538
    • /
    • 2009
  • We present calculations for $S_N$2/E2 reactions in protic solvents (t-butyl alcohol, ethylene glycol). We focus on the role of the hydroxyl (-OH) groups in determining the $S_N$2/E2 rate constants. We predict that the ion pair E2 mechanism is more favorable than the naked ion E2 reaction in ethylene glycol. E2 barriers are calculated to be much larger (~ 9 kcal/mol) than $S_N$2 reaction barriers in protic solvents, in agreement with the experimental observation [Kim, D. W. et al. J. Am. Chem. Soc. 2006, 128, 16394] of no E2 products in the reaction of CsF in t-butyl alcohol.

Electrochemical Reduction on the -S-N= Bond of N-Oxyldiethylenebenzothiazole-2-sulfenamide (N-Oxyldiethylenebenzothiazole-2-sulfenamide의 -S-N= 결합에 대한 전기화학적 환원)

  • Kim, Hae-Jin;Jung , Keun-Ho;Choi, Qw-Won;Kim, Il-Kwang;Leem, Sun-Young
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.680-688
    • /
    • 1991
  • The electrochemical reduction of N-oxyldiethylenebenzothiazole-2-sulfenamide (ODBS; vulcanization accelerator) was investigated by direct current polarography, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible electrode reduction of ODBS proceeded E-C-E-C reaction mechanism by three electrons transfer with irreversible one wave (-1.86 volts vs. Ag/0.1 M AgN$O_3$ in AN). As the results of controlled potential electrolysis, mercaptobenzothiazole (MBT), benzothiazole disulfide (MBT dimer) and extricated sulfur were products which followed by cleavage of the sulfenamide (-S-N=) bond. Upo the basis of products analysis and polarogram interpretation witli pH variable, electrochemical reaction mechanism was suggested.

  • PDF

Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals (산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구)

  • Young-Gu Cheun;Jae-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 1992
  • The cationic polymerization of cyclic acetals are investigated theoretically using the semiempirical MINDO/3, MNDO, and $AM_1$, methods. The nucleophilicity and basicity of cyclic acetals can be explained by the negative charge on oxygen atom of cyclic acetals. The reactivity of propagation in the polymerization of cyclic acetals can be represented by the positive charge on $C_2$ atom and the low LUMO energy of active species of cyclic acetals. The reactivity of 2-buthyl-1,3-dioxepane(2-Bu-DOP) of cyclic oxonium and opening carbenium ion form is expected computational stability of the oxonium ion by 5${\sim}$7kcal/mole favoring the carbenium ion. Owing to the rapid equilibrium of these cation forms and the reaction coordinate based on calculation that the reaction coordinate based on calculation that the chain growth $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.

  • PDF

Kinetics and Mechanism of the Aminolysis of Anilino Thioethers with Benzylamines in Acetonitrile

  • Oh, Hyuck-Keun;Lee, Jae-Myun;Sung, Dae-Dong;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.557-559
    • /
    • 2004
  • The aminolyses of anilinothioethers $(C_6H_5N(CH_3)CH_2SC_6H_4Z)$ in acetonitrile with benzylamines $(XC_6H_4CH_2NH_2)$ have been investigated. The rates are much lower in acetonitrile than in methanol (with aniline). The Bronsted ${\beta}_X$ values are similar but ${\beta}_Z$ values are smaller compared to those for the reactions in MeOH with anilines. The large negative ${\rho}_{XZ}({\cong}-0.8$, after correction for fall-off) value is interpreted to indicate a frontside attack $S_N2$ mechanism, in which the two oppositely changed reaction centers in the TS, $-N^{{\delta}+}{\cdots}S^{{\delta}-}-$, are in close vicinity increasing the interaction between nucleophile and leaving group. The inverse secondary kinetic isotope effects ($k_H/k_D$ < 1.0) are observed with deuterated benzylamines $(XC_6H_4CH_2ND_2)$.

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide (졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해)

  • Myung, Jung-Jae;Park, Jin-koo;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.777-783
    • /
    • 1997
  • $TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

  • PDF

The Mechanism of the Decomposition of a Bronchodilator, S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), by a Bronchoconstrictor, Aqueous Sulfite: Detection of the N-Nitrosohydroxylamine-N-sulfonate ion

  • Holder, Alvin A.;Marshall, Sophia C.;Wang, Peng George;Kwak, Chee-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.350-356
    • /
    • 2003
  • The mechanism of the decomposition of a bronchodilator, S-nitroso-N-acetyl-D,L-penicillamine (SNAP) by a bronchoconstrictor, aqueous sulfite, has been investigated in detail. The decomposition was studied using a conventional spectrophotometer at 336 nm over the ranges: 0.010 ≤ $[S^{IV}]_T$ ≤ 0.045 mol $dm^{-3}$, 3.96 ≤ pH ≤ 6.80 and 15.0 ≤ θ≤ 30.0 ℃, 0.60 ≤ I ≤ 1.00 mol $dm^{-3}$, and at ionic strength 1.00 mol $dm^{-3}$ (NaCl). The rate of reaction is dependent on the total sulfite concentration and pH in a complex manner, i.e., $k_{obs}\;=\;k_1K_2[S^{IV}]_T/ ([H^+]\;+\;K_2)$. At 25.0 ℃, the second order rate constant, $k_1$, was determined as $12.5\;{\pm}\;0.15\;mol^{-1}\;dm^3\;s^{-1}$. ${\Delta}H^{neq}\;=\;+32\;{\pm}\;3 kJ\;mol^{-1}\;and\;{\Delta}S^{\neq}\;=\;-138\;{\pm}\;13\;J\;mol^{-1}K^{-1}$. The N-nitrosohydroxylamine-N-sulfonate ion was detected as an intermediate before the formation of any of the by-products, namely, N-acetyl-D,L-penicillamine. The effect of concentration of aqueous copper(Ⅱ) ions on this reaction was also examined at pH 4.75, but there was no dependence on $[Cu^{2+}]$. In addition, the $pK_a$ of SNAP was determined as 3.51 ± 0.06 at 25.4 ℃ [I = 1.0 mol $dm^{-3}$ (NaCl)].

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.