DOI QR코드

DOI QR Code

The Mechanism of the Decomposition of a Bronchodilator, S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), by a Bronchoconstrictor, Aqueous Sulfite: Detection of the N-Nitrosohydroxylamine-N-sulfonate ion

  • Holder, Alvin A. (The University of Toledo, College of Arts of and Sciences, Department of Chemistry) ;
  • Marshall, Sophia C. (Department of Biological and Chemical Sciences, University of the West Indies) ;
  • Wang, Peng George (Department of Chemistry, Wayne State University) ;
  • Kwak, Chee-Hun (Department of Chemistry, Sunchon National University)
  • Published : 2003.03.20

Abstract

The mechanism of the decomposition of a bronchodilator, S-nitroso-N-acetyl-D,L-penicillamine (SNAP) by a bronchoconstrictor, aqueous sulfite, has been investigated in detail. The decomposition was studied using a conventional spectrophotometer at 336 nm over the ranges: 0.010 ≤ $[S^{IV}]_T$ ≤ 0.045 mol $dm^{-3}$, 3.96 ≤ pH ≤ 6.80 and 15.0 ≤ θ≤ 30.0 ℃, 0.60 ≤ I ≤ 1.00 mol $dm^{-3}$, and at ionic strength 1.00 mol $dm^{-3}$ (NaCl). The rate of reaction is dependent on the total sulfite concentration and pH in a complex manner, i.e., $k_{obs}\;=\;k_1K_2[S^{IV}]_T/ ([H^+]\;+\;K_2)$. At 25.0 ℃, the second order rate constant, $k_1$, was determined as $12.5\;{\pm}\;0.15\;mol^{-1}\;dm^3\;s^{-1}$. ${\Delta}H^{neq}\;=\;+32\;{\pm}\;3 kJ\;mol^{-1}\;and\;{\Delta}S^{\neq}\;=\;-138\;{\pm}\;13\;J\;mol^{-1}K^{-1}$. The N-nitrosohydroxylamine-N-sulfonate ion was detected as an intermediate before the formation of any of the by-products, namely, N-acetyl-D,L-penicillamine. The effect of concentration of aqueous copper(Ⅱ) ions on this reaction was also examined at pH 4.75, but there was no dependence on $[Cu^{2+}]$. In addition, the $pK_a$ of SNAP was determined as 3.51 ± 0.06 at 25.4 ℃ [I = 1.0 mol $dm^{-3}$ (NaCl)].

Keywords

References

  1. Butler, A. R.; Rhodes, P. Anal. Biochem. 1997, 249, 1. https://doi.org/10.1006/abio.1997.2129
  2. Stamler, J. S. S-nitrosothiols and the Bioregulatory Actions of Nitric Oxide through Reactions with Thiol Groups; Springer-Verlag: New York, 1993; p 19.
  3. Williams, D. L. H. Chem. Soc. Rev. 1985, 14, 171. https://doi.org/10.1039/cs9851400171
  4. Myers, P. R.; Minor, R. L.; Guerra, R.; Bates, J. N.; Harrison, D. G. Nature 1990, 345, 161. https://doi.org/10.1038/345161a0
  5. Stamler, J. S.; Jaraki, O. A.; Osbourne, J. A.; Simon, D. I.; Keaney, J. F.; Singel, D. J.; Valeri, C. R.; Loscalzo, J. Proc. Natl. Acad. Sci. 1992, 89, 7674. https://doi.org/10.1073/pnas.89.16.7674
  6. Arnelle, D. R.; Stamler, J. S. Arch. Biochem. Biophys. 1995, 318, 279. https://doi.org/10.1006/abbi.1995.1231
  7. Feelish, M.; Stamler, J. S. Methods in Nitric Oxide Research; JohnWiley and Sons Ltd.: England, 1996; p 84.
  8. Ignarro, L. J.; Edwards, J. C.; Gruetter, D. Y. et al. FEBS Lett.1990, 110, 275. https://doi.org/10.1016/0014-5793(80)80091-3
  9. Butler, A. R.; Williams, D. L. H. Chem. Rev. 1993, 22, 233. https://doi.org/10.1039/cs9932200233
  10. Stamler, J. S.; Simon, D. I.; Osborne, J. A.; Mullins, M. E.; Jarali, T.; Michel, T.; Singel, D. J.; Loscalzo, J. Proc. Natl. Acad. Sci. 1992, 89, 444. https://doi.org/10.1073/pnas.89.1.444
  11. Barnett, D. J.; McAninly, J.; Williams, D. L. H. J. Chem. Soc. Perkins Trans. 2 1994, 1131.
  12. Gaston, B.; Sears, S.; Woods, J.; Hunt, J.; Ponaman, M.; McMahon, T.; Stamler, J. S. Lancet 1998, 351, 1317. https://doi.org/10.1016/S0140-6736(97)07485-0
  13. Hamid, Q.; Springall, D. R.; Riveros-Moreno, V. Lancet 1993,342, 1510. https://doi.org/10.1016/S0140-6736(05)80083-2
  14. Harvey, S. B.; Nelsestuen, G. L. Biochim. Biophys. Acta 1995,1267, 41. https://doi.org/10.1016/0167-4889(95)00059-2
  15. Gould, G. W.; Russell, N. J. Food Preservations; Reinhold: New York, 1991; Chapter 5.
  16. Fine, J. M.; Gordon, T.; Sheppard, D. Am. Rev. Respir. Dis. 1987, 136, 1122. https://doi.org/10.1164/ajrccm/136.5.1122
  17. Field, P. I.; McClean, M.; Simmul, R.; Berend, N. Thorax. 1994,49, 250. https://doi.org/10.1136/thx.49.3.250
  18. Wright, W.; Zhang, Y. G.; Salone, C. M.; Woolcock, A. J. Am. Rev. Respir. Dis. 1990, 141, 1400. https://doi.org/10.1164/ajrccm/141.6.1400
  19. Terres, E.; Lichti, H. Angew. Chem. 1934, 47, 511. https://doi.org/10.1002/ange.19340472802
  20. Nunes, T. L.; Powell, R. E. Inorg. Chem. 1970, 9, 1916. https://doi.org/10.1021/ic50090a023
  21. Takeuchi, H.; Ando, M.; Kizawa, N. Ind. Eng. Chem. ProcessDes. Dev. 1977, 16, 303. https://doi.org/10.1021/i260063a010
  22. Martin, L. R.; Damschen, D. E.; Judeikis, H. S. Atmos. Environ.1981, 15, 191. https://doi.org/10.1016/0004-6981(81)90010-X
  23. Littlejohn, D.; Hu, K. Y.; Chang, S. G. Inorg. Chem. 1986, 25,3131. https://doi.org/10.1021/ic00238a007
  24. Munro, P.; Williams, D. L. H. J. Chem. Soc., Perkins Trans. 22000, 1794.
  25. van Eldik, R.; Harris, G. M. Inorg. Chem. 1980, 19, 880. https://doi.org/10.1021/ic50206a018
  26. Field, L.; Ravichandran, R.; Lenhert, P. G.; Carnahan, G. E. J.Chem. Soc., Chem. Commun. 1978, 249.
  27. Moynihan, H. A.; Roberts, S. M. J. Chem. Soc., Perkins Trans. 11994, 797.
  28. Williams, D. L. H. Chem. Commun. 1996, 1085.
  29. Holder, A. A.; Harewood, G. R.; Abdur-Rashid, K.; Dasgupta, T.P. J. Chem. Educ., in press.
  30. Gergel, D.; Cederbaum, A. I. Arch. Biochem. Biophys. 1997, 347,282. https://doi.org/10.1006/abbi.1997.0352
  31. Ellman, G. L. Arch Biochem. Biophys. 1959, 82, 70. https://doi.org/10.1016/0003-9861(59)90090-6
  32. Zhang, V.; van Eldik, R. J. Chem. Soc., Dalton. Trans. 1993, 112.
  33. Ackermann, M. N.; Powell, R. E. Inorg. Chem. 1967, 6, 1718. https://doi.org/10.1021/ic50055a023
  34. Bronsted, J. N. Z. Phys. Chem. 1922, 102, 169.
  35. Holder, A. A.; Dasgupta, T. P.; Im, S. C. Transition Met. Chem.1997, 22, 135. https://doi.org/10.1023/A:1018463013139
  36. Holder, A. A.; Dasgupta, T. P. Inorg. Chim. Acta 2002, 331, 279. https://doi.org/10.1016/S0020-1693(02)00686-2
  37. Atkins, P. W. Physical Chemistry, 4th Ed.; Oxford UniversityPress: Oxford, UK, 1990; p 858.
  38. Koenig, J. Q.; Pierson, W. E.; Horik, M.; Frank, R. Arch. Environ.Health 1982, 37, 5. https://doi.org/10.1080/00039896.1982.10667525
  39. Nadel, J. A.; Salen, H.; Tamplin, B.; Tokiwa, Y. J. Appl. Physiol.1965, 20, 164.
  40. Schachter, E. N.; Witek, T. J.; Beck, G. J.; Hosein, H. R.; Colice,G.; Leaderer, B. P.; Cain, W. Arch. Environ. Health 1984, 39, 34. https://doi.org/10.1080/00039896.1984.10545831
  41. Sheppard, D.; Wong, W. S.; Uehara, C. F.; Nadel, J. A.; Boushey,H. A. Am. Rev. Respir. Dis. 1980, 122, 873.
  42. Twarog, F. J.; Leung, D. Y. M. J. Am. Med. Assoc. 1982, 248,2030. https://doi.org/10.1001/jama.248.16.2030
  43. Keopke, J. W.; Christopher, K. L.; Chai, H.; Selner, J. C. J. Am.Med. Assoc. 1984, 251, 2982. https://doi.org/10.1001/jama.251.22.2982
  44. Dicks, A. P.; Swift, H. R.; Williams, D. L. H.; Butler, A. R.; AlSadoni, H. H.; Cox, B. G. J. Chem. Soc., Perkin Trans. 2 1996,481
  45. Herves, P.; Williams, D. L. H. Chem. Commun. 1997, 89.
  46. Silva, L. A.; Matos, J. R.; deAndrade, J. B. Thermochim. Acta2000, 360, 17. https://doi.org/10.1016/S0040-6031(00)00525-6
  47. Inoue, M.; Grijalva, H.; Inoue, M. B.; Fernando, Q. Inorg. Chim. Acta 1999, 295, 125. https://doi.org/10.1016/S0020-1693(99)00333-3
  48. Al-Ajlouni, A. M.; Gould, E. S. Inorg. Chem. 1997, 36, 362. https://doi.org/10.1021/ic960907r

Cited by

  1. Effects of the Food Additive Sulfite on Nitrite-Dependent Nitric Oxide Production under Conditions Simulating the Mixture of Saliva and Gastric Juice vol.60, pp.4, 2012, https://doi.org/10.1021/jf2049257
  2. S‐Nitrosothiol Chemistry at the Single‐Molecule Level vol.124, pp.32, 2003, https://doi.org/10.1002/ange.201202365
  3. S‐Nitrosothiol Chemistry at the Single‐Molecule Level vol.51, pp.32, 2012, https://doi.org/10.1002/anie.201202365
  4. S-Nitrosylation signaling regulates cellular protein interactions vol.1820, pp.6, 2003, https://doi.org/10.1016/j.bbagen.2011.06.017