• Title/Summary/Keyword: $Pro-Root^{(R)}$ MTA

Search Result 6, Processing Time 0.019 seconds

Effect of Acidic Environment on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials (산성 환경이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향)

  • Park, Misun;Kim, Jaehwan;Choi, Namki;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • The aim of this study was to evaluate the effect of a range of acidic pH values on the push-out bond strength and surface morphology of tricalcium silicate materials: Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$ according to manufacturer's instructions. The specimens were randomly divided into 4 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; 3 acidic groups (butyric acid buffered at pH 4.4, 5.4, 6.4) and 1 control group (phosphate buffered saline solution at pH 7.4). The push-out bond strengths were then measured by using a universal testing machine and the surface morphology of each experimental group was analyzed by a scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with ProRoot MTA$^{(R)}$ after exposure to acidic pH values. A substantial change in the surface morphology of each material occurred after exposure to different pH values. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ are higher than the ProRoot MTA$^{(R)}$. Further the acidic environment weakens the push-out bond strength and microstructure of tricalcium silicate materials.

Effect of Intracanal Medicaments on Push-out Bond Strength of Calcium Silicate-based Materials (근관내 약제가 규산칼슘 기반 재료의 압출 강도에 미치는 영향)

  • Jeong, Hyuntae;Yang, Sunmi;Kim, Seonmi;Choi, Namki;Kim, Jaehwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.455-463
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of the intracanal medicaments on the push-out bond strength of the calcium silicate-based materials. Forty extracted single-root human mandibular premolars were sectioned below cementoenamel junction. Standardized root canal dimension was obtained with a parallel post drill. The specimens were randomly divided into a control group (no medicament), and experimental groups received medicaments with either CH (calcium hydroxide), DAP (double antibiotic paste; a mixture of ciprofloxacin and metronidazole), or TAP (triple antibiotic paste; a mixture of minocycline, ciprofloxacin and metronidazole). Following removal of medicaments with irrigation, roots were cut into sections with 1-mm-thickness. Thereafter, calcium silicate-based materials are applied to the specimens : (i) ProRoot MTA$^{(R)}$ and (ii) Biodentine$^{(R)}$. A push-out bond strength was measured and each specimen was examined to evaluate failure mode. Intracanal medication using CH significantly increased the bond strength to the root dentin. But there are no significant differences on the bond strength of ProRoot MTA$^{(R)}$ or Biodentine$^{(R)}$ among TAP, DAP and control groups. The dislodgement resistance of Biodentine$^{(R)}$ from root dentin was significantly higher than that of ProRoot MTA$^{(R)}$ regardless of the type of intracanal medicaments.

Tissue response of Pro-Root® MTA with rhBMP-2 in pulpotomized rat teeth (백서에서 치수 절단술 시행 시 Pro-Root® MTA 단독 사용군과 rhBMP-2 혼용 사용군 간의 조직 반응 비교 연구)

  • Park, Kyung-Tae;Yang, Won-Kyung;Ko, Hyun-Jung;Kim, Mi-Ri
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.403-410
    • /
    • 2007
  • The purpose of this study was to investigate whether rhBMP-2 (BMP2) could induce synergistic effect with $Pro-Root^{(R)}$ MTA (MTA) in pulpotomized teeth in the rats. Healthy upper first molars from thirty-two, 10 weeks old, Sprague-Dawley rats were used for this investigation. The molars were exposed with round bur, and light pressure was applied with sterilized cotton to control hemorrhage. 1.2 grams of MTA cement was placed in right first molars as a control group. In left first molars, $1\;{\mu}g$ of BMP2 was additionally placed on exposed pulps with MTA. All cavities were back-filled with light-cured glass-ionomer cements. The rats were sacrificed after 2 weeks and 7 weeks, respectively. Then histologic sections were made and assessed by light microscopy. Data were statistically analyzed via student t-test with SPSSWIN 12.0 program (p < 0.05). Inflammation observed in 2 weeks groups were severe compared to the 7 weeks groups. But the differences were not statistically significant. BMP2-addition groups had less inflammation than MTA groups in both periods, though these differences were also not statistically significant. In conclusion, the combination of BMP2 and MTA showed no differences with MTA only for pulpotomy of rat teeth.

The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

  • Jeong, Youngdan;Yang, Wonkyung;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.187-194
    • /
    • 2014
  • Objectives: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

PULP RESPONSE OF BEAGLE DOG TO DIRECT PULP CAPPING MATERIALS: HISTOLOGICAL STUDY (직접치수복조재에 따른 비글견 치수의 조직반응에 대한 연구)

  • Bae, Ji-Hyun;Kim, Young-Gyun;Yoon, Pil-Young;Cho, Byeong-Hoon;Choi, Yong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study was to evaluate the pulp tissue reaction to direct pulp capping of mechanically exposed beagle dogs' pulp with several capping materials. A total of 36 teeth of 2 healthy beagle dongs were used. The mechanically exposed pulps were capped with one of the followings: (1) Mineral Trioxide Aggregate (MTA: $ProRoot^{(R)}$ MTA. Dentsply, Tulsa, USA), (2) Clearfil SE Bond (Dentin adhesive system: Kuraray, Osaka, Japan), (3) Ultra-Blend (Photo-polymerized Calcium hydroxide: Ultradent, South Jordan, USA), (4) Dycal (Quick setting Calcium hydroxide: LD Caulk Co., Milford, USA) at 7, 30, and 90 days before sacrificing. The cavities were restored with Z350 flowable composite resin (3M ESPE, St. Paul. MN, USA). After the beagle dogs were sacrificed, the extracted teeth were fixed, decalcified, prepared for histological examination and stained with HE stain. The pulpal tissue responses to direct pulp capping materials were assessed. In MTA calcium hydroxide, and photo-polymerized calcium hydroxide groups, initial mild inflammatory cell infiltration, newly formed odontoblast-like cell layer and hard tissue bridge formation were observed. Compared with dentin adhesive system, these materials were biocompatible and good for pulp tissue regeneration. In dentin adhesive system group, severe inflammatory cell infiltration, pulp tissue degeneration and pulp tissue necrosis were observed. It seemed evident that application of dentin adhesive system in direct pulp capping of beagle dog teeth cannot lead to acceptable repair of the pulp tissue with dentine bridge formation.

Comparison of the Microleakage and Shear Bond Strength to Dentine of Different Tricalcium Silicate-based Pulp Capping Materials (Tricalcum-silicate 기반 치수복조제의 미세누출 및 상아질 전단결합강도 비교)

  • Kim, Miri;Jo, Wansun;Jih, Myeongkwan;Lee, Sangho;Lee, Nanyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • This study evaluated the microleakage of three restorative materials and three tricalcium silicate-based pulp capping agents. The restorative materials were composite resin (CR), resin-reinforced glass ionomer cement (RMGI), and traditional glass ionomer cement (GIC) and the pulp capping agents were TheraCal $LC^{(R)}$ (TLC), $Biodentine^{(R)}$ (BD), and $ProRoot^{(R)}$ white MTA (WMTA). Additionally, shear bond strengths between the pulp-capping agents and dentine were compared. Class V cavities were made in bovine incisors and classified into nine groups according to the type of pulp-capping agent and final restoration. After immersion in 0.5% fuchsin solution, each specimen was observed with a stereoscopic microscope to score microleakage level. The crowns of the bovine incisors were implanted into acrylic resin, cut horizontally, and divided into three groups. TLC, BD and WMTA blocks were applied on dentine, and the shear bond strengths were measured using a universal testing machine. The microleakage was lowest in TLC + GIC, TLC + RMGI, TLC + CR, and BD + GIC groups and highest in WMTA + RMGI and WMTA + CR groups. The shear bond strength of BD group was the highest and that of WMTA group was significantly lower than the others.