• 제목/요약/키워드: $Pichia$ $stipitis$

검색결과 48건 처리시간 0.018초

바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera)칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색 (Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation)

  • 김혜연;이재원;;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권1호
    • /
    • pp.75-85
    • /
    • 2011
  • 이 연구에서는 백합나무($Liriodendron$ $tulipifera$)를 옥살산으로 전처리한 시료로부터 에탄올 생산 가능성을 조사하고, response surface methodology (RSM)를 도입하여 전처리 조건을 분석하고자 한다. 산농도, 전처리 시간, 반응 온도를 조절하여 $2^3$ factorial central composite experimental design을 바탕으로 각기 다른 15가지의 전처리 조건에서 시험하였다(central point에서 2반복). 전처리 후 고체 시료는 발효 균주인 $Pichia$ $stipitis$를 사용하여 동시당화발효로 에탄올 생산에 이용되었으며, 각각의 시료에서의 72시간에서의 에탄올 생산량(y,g/${\ell}$)이 최대값으로, 종속변수로써 RSM에 적용되었다. $180^{\circ}C$에서 40분간 0.013 g/g의 옥살산으로 처리한 시료가 가장 많은 양의 에탄올(9.7 g/${\ell}$)을 생산하였으며, response surface methodology 분석에 따르면, 전처리 조건에서 온도 인자가 ethanol에 가장 큰 영향을 미치는 것으로 제시되었으며, 결과는 수식화되어 나타내었다.

Chemical Characteristics and Ethanol Fermentation of the Cellulose Component in Autohydrolyzed Bagasse

  • Asada Chikako;Nakamura Yoshitoshi;Kobayashi Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권4호
    • /
    • pp.346-352
    • /
    • 2005
  • The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation using Pichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Eucheuma spinosum으로부터 다양한 효모를 이용한 바이오에탄올 생산 (Bioethanol Production from Eucheuma spinosum using Various Yeasts)

  • 김민지;김정수;라채훈;김성구
    • KSBB Journal
    • /
    • 제28권5호
    • /
    • pp.315-318
    • /
    • 2013
  • Ethanol fermentations were performed using separate hydrolysis and fermentation (SHF) processes with monosaccharides from pretreated seaweed, Eucheuma spinosum as the biomass. The pretreatment was carried out with 11% (w/v) seaweed slurry and 150 mM $H_2SO_4$ at $121^{\circ}C$ for 40 min. Enzyme hydrolysis after $H_2SO_4$ pretreatment was performed with Celluclast 1.5 L at $45^{\circ}C$ for 24 h. Five % active charcoal were added to hydrolysate to removed 5-hydroxy methylfurfural. Ethanol fermentation with 11% (w/v) seaweed hydrolysate was performed for 72~96 h using Kluyvermyces marxianus, Pichia stipits, Saccharomyces cervisiae and Candida tropicalis. Ethanol concentration was reached to 18 g/L by K. marxianus, 16 g/L by P. stipitis, 15 g/L by S. cerevisiae and 10 g/L by C. tropicalis, respectively. The ethanol yield from total monosugar was obtained 0.50 and ethanol productivity was obtained 0.38 g/L/h by K. marxianus.

옥살산 전처리 옥수숫대를 이용한 동시당화발효 최적 조건 탐색 (Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid)

  • 서영준;임우석;이재원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권6호
    • /
    • pp.490-497
    • /
    • 2011
  • 본 연구는 옥살산으로 전처리를 수행한 후 얻어진 옥수숫대를 이용하여 동시당화발효를 위한 최적조건을 탐색하였다. Pichia stipitis CBS 6054를 이용한 동시당화발효에서 독립변수인 반응온도($25.8{\sim}34.2^{\circ}C$)와 교반속도(80~220 rpm)에 대한 에탄올 생산량은 각각 99% 신뢰구간을 가졌다. 종속변수로 에탄올 생산량을 적용하였을 때 $30^{\circ}C$, 170 rpm에서 최대의 에탄올 생산을 예측할 수 있었다(22.5 g/L). 최적의 온도 및 교반속도에서 최적 질소원을 조사한 결과 yeast extract (1.25 g/L)와 urea (1.25 g/L)를 혼합하여 사용하였을 경우 에탄올 생산량은 증가하였으며 trace metal 성분과 비타민은 첨가하지 않았을 때 에탄올 생산이 촉진되었다. 동시당화 발효를 위한 $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$의 최적 농도는 각각 1 g/L, 0.25 g/L로 나타났다.

Development of a Practical and Cost-Effective Medium for Bioethanol Production from the Seaweed Hydrolysate in Surface-Aerated Fermentor by Repeated-Batch Operation

  • Lee, Sang-Eun;Lee, Ji-Eun;Shin, Ga-Young;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.107-113
    • /
    • 2012
  • To develop a practical and cost-effective medium for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, we investigated the feasibility and performance of bioethanol production in CSL (corn-steep liquor)-containing medium, where yeast Pichia stipitis was used and the repeated batch was carried out in a surface-aerated fermentor. The optimal medium replacement time during the repeated operation was determined to be 36 h, and the surface aeration rates were 30 and 100 ml/min. Under these conditions, the repeated-batch operation was successfully carried out for 6 runs (216 h), in which the maximum bioethanol concentrations reached about 11-12 g/l at each batch operation. These results demonstrated that bioethanol production could be carried out repeatedly and steadily for 216 h. In these experiments, the total cumulative bioethanol production was 57.9 g and 58.0 g when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. In addition, the bioethanol yields were 0.43 (about 84% of theoretical value) and 0.44 (about 86% of theoretical value) when the surface aeration rates were 30 ml/min and 100 ml/min, respectively. CSL was successfully used as a medium ingredient for the bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, indicating that this medium may be practical and cost-effective for bioethanol production.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

팜 부산물 옥살산 전처리에 사용된 촉매 회수와 바이오에탄올 생산 (Recovery of Catalyst Used in Oxalic Acid Pretreatment of Empty Fruit Bunch (EFB) and Bioethanol Production)

  • 정소연;이홍주;이재원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권6호
    • /
    • pp.507-514
    • /
    • 2013
  • 본 연구에서는 옥살산을 이용하여 팜 부산물 전처리를 수행하였으며 전처리에 사용된 산 촉매를 회수하였다. $150^{\circ}C$에서 전처리 후 액상가수분해산물에 포함된 발효가능한 당은 $20g/{\ell}$로 다른 조건에서 보다 높았으며 발효를 수행한 결과 72시간 후 $3.78g/{\ell}$의 에탄올을 생산하였다. 이것은 0.21 g/g의 에탄올 수율에 해당한다. $160^{\circ}C$ 이상의 전처리 조건에서 얻어진 액상가수분해산물의 발효는 이루어지지 않았다. 전기투석에 의해 액상가수분해산물에 포함된 옥살산은 대부분 회수되었으며 동시에 일부 발효저해물질도 제거되었다. 전기투석 후 액상가수분해산물을 이용한 에탄올 발효는 효율적으로 이루어졌으며 발효 24시간 후 $5.38g/{\ell}$의 에탄올을 생산하였다. 이것은 0.33 g/g의 에탄올 수율에 해당한다. 전처리 후 고형바이오매스를 이용하여 동시당화발효를 수행한 결과 모든 전처리 조건에서 96시간 후 $15g/{\ell}$ 이상의 에탄올을 생산하였으며, 특히 $170^{\circ}C$ 전처리 조건에서 $20.54g/{\ell}$의 높은 에탄올 생산을 나타냈다. 전기투석 후 액상가수분해산물을 이용하여 동시당화발효를 수행한 결과 에탄올 생산이 향상되었음을 확인할 수 있었다.