DOI QR코드

DOI QR Code

Recovery of Catalyst Used in Oxalic Acid Pretreatment of Empty Fruit Bunch (EFB) and Bioethanol Production

팜 부산물 옥살산 전처리에 사용된 촉매 회수와 바이오에탄올 생산

  • Jeong, So-Yeon (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Hong-Joo (Department of Bioenergy and Technology, Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 정소연 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이홍주 (전남대학교 농업생명과학대학 바이오에너지공학과) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2013.05.22
  • Accepted : 2013.10.30
  • Published : 2013.11.25

Abstract

In this study, oxalic acid pretreatment of empty fruit bunch (EFB) was performed at different pretreatment temperatures. Also, we evaluated oxalic acid recovery from hydrolysate by electrodialysis. The fermentable sugar concentration in hydrolysate was high at more than $20g/{\ell}$, when pretreatment was carried out at $150^{\circ}C$. At the same time, ethanol production was $3.78g/{\ell}$ after 72 h which correspond to the ethanol yield of 0.21 g/g. On the other hydrolysate (160, $170^{\circ}C$), fermentable sugar was not consumed by Pichia stipitis during fermentation. Most of the oxalic acid was recovered and some of the fermentation inhibitors were removed by electrodialysis. For the electrodialysis treated hydrolysate, ethanol production was increased compared to the original hydrolysate. The highest ethanol production was $5.38g/{\ell}$ after 24 h which correspond to the yield of 0.33 g/g. The ethanol production by simultaneous saccharification and fermentation (SSF) under all pretreatment conditions was more than $15g/{\ell}$ after 96 h. The highest ethanol production was $20.54g/{\ell}$, when pretreatment was performed at $170^{\circ}C$. In particular, ethanol production was increased, when electrodialysis treated hydrolysate was used for SSF.

본 연구에서는 옥살산을 이용하여 팜 부산물 전처리를 수행하였으며 전처리에 사용된 산 촉매를 회수하였다. $150^{\circ}C$에서 전처리 후 액상가수분해산물에 포함된 발효가능한 당은 $20g/{\ell}$로 다른 조건에서 보다 높았으며 발효를 수행한 결과 72시간 후 $3.78g/{\ell}$의 에탄올을 생산하였다. 이것은 0.21 g/g의 에탄올 수율에 해당한다. $160^{\circ}C$ 이상의 전처리 조건에서 얻어진 액상가수분해산물의 발효는 이루어지지 않았다. 전기투석에 의해 액상가수분해산물에 포함된 옥살산은 대부분 회수되었으며 동시에 일부 발효저해물질도 제거되었다. 전기투석 후 액상가수분해산물을 이용한 에탄올 발효는 효율적으로 이루어졌으며 발효 24시간 후 $5.38g/{\ell}$의 에탄올을 생산하였다. 이것은 0.33 g/g의 에탄올 수율에 해당한다. 전처리 후 고형바이오매스를 이용하여 동시당화발효를 수행한 결과 모든 전처리 조건에서 96시간 후 $15g/{\ell}$ 이상의 에탄올을 생산하였으며, 특히 $170^{\circ}C$ 전처리 조건에서 $20.54g/{\ell}$의 높은 에탄올 생산을 나타냈다. 전기투석 후 액상가수분해산물을 이용하여 동시당화발효를 수행한 결과 에탄올 생산이 향상되었음을 확인할 수 있었다.

Keywords

References

  1. 김혜연, 이재원, Thomas W. Jeffries, 곽기섭, 최인규. 2009. 바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색. 목재공학 37: 397-405.
  2. Rajagopal, D., S. E. Sexton, D. W. Roland-Holst, and D. D. Zilberman. 2007. Challenge of biofuel: filling the tank without emptying the stomach?, Environ. Res. 2: 1-9.
  3. Cassman, K. G. and A. J. Liska. 2007. Food and fuel for all: realistic or foolish?, Biofuels. Bioprod. Biorefin. 1: 18-23. https://doi.org/10.1002/bbb.3
  4. Wyman, C. E. 1999. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Env. 24: 189-226. https://doi.org/10.1146/annurev.energy.24.1.189
  5. Kootstra, A. M. J., H. H. Beeftink, E. L. Scott, and J. P. M. Sanders. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. 46: 126-131. https://doi.org/10.1016/j.bej.2009.04.020
  6. Kenealy, W., E. Horn, and C. Houtman. 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: part 1. Energy saving and improved pulps. Holzforschung 61: 223-229.
  7. Lee, J. W., R. C. L. B. Rodrigues, and T. W. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresour. Technol. 100: 6307-6311. https://doi.org/10.1016/j.biortech.2009.06.088
  8. Shimada, M., D. B. Ma, Y. Akamatsu, and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol. Rev. 13: 285-295. https://doi.org/10.1111/j.1574-6976.1994.tb00049.x
  9. Lee, H. J., S. J. Ahn, Y. J. Seo, and J. W. Lee. 2013. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 130: 211-217. https://doi.org/10.1016/j.biortech.2012.12.061
  10. Lee, H. J., Y. J. Seo, and J. W. Lee. 2013. Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis. Bioresour. Technol. 133: 87-91. https://doi.org/10.1016/j.biortech.2013.01.051
  11. Singleton V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  12. Selig, M., N. Weiss, and Y. Ji. 2008. Enzymatic Saccharification of Lignocellulosic Biomass, NREL/TP-510-42629, National Renewable Energy Laboratory. Golden, CO.
  13. Sluiter, A., B. Hames, R. Ruiz, C. Scarlate, J. Sluiter, D. Templeton. and D. Crocker. 2010. Laboratory Analytical Procedure, Determination of structural carbohydrate and lignin in biomass.
  14. 서영준, 임우석, 이재원. 2011. 옥살산 전처리 옥수숫대를 이용한 동시당화발효 최적 조건 탐색. 목재공학 36: 490-497. https://doi.org/10.5658/WOOD.2011.39.6.490
  15. 김혜연, 이재원, Thomas W. Jeffries, 최인규. 2011. 바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera) 칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색. 목재공학 39: 75-85. https://doi.org/10.5658/WOOD.2011.39.1.75
  16. Lee, J. W., R. C.L.B. Rodrigues, H. J. Kim, I. G. Choi, and T. W. Jeffries. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101: 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
  17. Palmqvist, E., H. Grage, N. Q. Meinander, B. Hahn-Haerdal. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46-55. https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  18. Clark, T. A. and K. L. Mackie. 1984. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata, J. Chem. Technol. Biotechnol. 34: 101-110.
  19. Larsson, S., A. Reimann, Nils-Ol of Nilvebrant and L. J. Jonsson. 1999. Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce. Appl. Biochem. Biotechnol. 77: 91-103. https://doi.org/10.1385/ABAB:77:1-3:91
  20. Wei, C., X. Li, Z. Deng, G. Fan, M. Li, and C. Li. 2010. Recovery of H2SO4 from an acid leach solution by diffusion dialysis. J. Hazard. Mater. 176: 226-230. https://doi.org/10.1016/j.jhazmat.2009.11.017

Cited by

  1. Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.360