DOI QR코드

DOI QR Code

Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid

옥살산 전처리 옥수숫대를 이용한 동시당화발효 최적 조건 탐색

  • Seo, Young-Jun (Department of Forest Products and Technology (BK21 Program), Chonnam National University) ;
  • Lim, Woo-Seok (Department of Forest Products and Technology (BK21 Program), Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology (BK21 Program), Chonnam National University)
  • 서영준 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 임우석 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2011.08.09
  • Accepted : 2011.11.04
  • Published : 2011.11.25

Abstract

In this study, we determined optimal conditions for simultaneous saccharification and fermentation (SSF) using corncob biomass pretreated with oxalic acid. The effect of SSF temperature ($25.8{\sim}34.2^{\circ}C$) and agitation speed (80~220 rpm) were significant at a 99% confidence level in its effect on ethanol production. The highest ethanol production was expected when SSF was performed at $30^{\circ}C$, 170 rpm (22.5 g/L). The ethanol production was improved by mixture of yeast extract (1.25 g/L) and urea (1.25 g/L) as nitrogen source. However, addition of trace metal components and vitamin for SSF was not affected in the ethanol production. Optimal concentration of $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$ for SSF was 1 g/L, 0.25 g/L respectively.

본 연구는 옥살산으로 전처리를 수행한 후 얻어진 옥수숫대를 이용하여 동시당화발효를 위한 최적조건을 탐색하였다. Pichia stipitis CBS 6054를 이용한 동시당화발효에서 독립변수인 반응온도($25.8{\sim}34.2^{\circ}C$)와 교반속도(80~220 rpm)에 대한 에탄올 생산량은 각각 99% 신뢰구간을 가졌다. 종속변수로 에탄올 생산량을 적용하였을 때 $30^{\circ}C$, 170 rpm에서 최대의 에탄올 생산을 예측할 수 있었다(22.5 g/L). 최적의 온도 및 교반속도에서 최적 질소원을 조사한 결과 yeast extract (1.25 g/L)와 urea (1.25 g/L)를 혼합하여 사용하였을 경우 에탄올 생산량은 증가하였으며 trace metal 성분과 비타민은 첨가하지 않았을 때 에탄올 생산이 촉진되었다. 동시당화 발효를 위한 $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$의 최적 농도는 각각 1 g/L, 0.25 g/L로 나타났다.

Keywords

References

  1. 김혜연, 이재원, Thomas W. Jeffries. 최인규. 2011. 바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera) 칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색. 목재공학 39(1): 75-85.
  2. Bafrncova, P., D. Smogrovicova, I. Slavikova, J. Patkova, and Z. Domeny. 1999. Improvement of very high gravity ethanol fermentation by mediasupplementation using Saccharomyces cerevisiae. Biotechnology Letter. 21: 337-341. https://doi.org/10.1023/A:1005436816047
  3. Barl, B., C. G. Biliaderis, E. D. Murray, and A. W. Macgregor. 1991. Combined chemical and enzymatic treatment of corn husks lignocellulosics. Journal of Food Science Agricultural 56: 195-14. https://doi.org/10.1002/jsfa.2740560209
  4. Berlin, A., N. Gilkes, D. Kilburn, V. Maximenko, R. Bura, A. Markov, A. Skomarovsky, A. Gusakov, A. Sinitsyn, O. Okunev, J. Solovieva, and J. N. Saddler. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appled Biochemisty and Biotechnology 130: 528-545. https://doi.org/10.1385/ABAB:130:1:528
  5. Birch, R. M. and G. M. Walker. 2000. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology 26: 678-687. https://doi.org/10.1016/S0141-0229(00)00159-9
  6. Hu, C. K., F. W. Bai, and L. J. An. 2003. Enhancing ethanol tolerance of a self-flocculation fusant of Schizosaccharomyces pombe and Saccharomyces cervisiae by $Mg^{2+}$ via reduction in plasma membrane permeability. Biotechnology Letter, 25: 1191-1194. https://doi.org/10.1023/A:1024583503274
  7. Kootstra, A. M., H. H. Beeftink, E. L. Scott, and J. P. M. Sanders. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 46: 126-131. https://doi.org/10.1016/j.bej.2009.04.020
  8. Lee, J. W., R. C. L. B. Rodrigues, H. Y. Kim, I. G. Choi, and T. W. Jeffries. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101: 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
  9. Lee, J. W., R. C. L. B. Rodrigues, and T. W. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology 100: 6307-6311. https://doi.org/10.1016/j.biortech.2009.06.088
  10. Lu, Y. and N. S. Mosier. 2007. Biomimetic catalysis for hemicelluloses hydrolysis in corn stover. Biotechnology Progress 23: 116-123. https://doi.org/10.1021/bp060223e
  11. Meyer-Pinson, V., K. Ruel, F. Gaudard, G. Valtat, M. Petit-Conil, and B. Kurek. 2004. Oxalic acid: a microbial metabolite of interest for the pulping industry. Comptes Rendus Biologies 327(9-10): 917-925. https://doi.org/10.1016/j.crvi.2004.07.007
  12. Mosier, N. S., A. Sarikaya, C. M. Ladisch, and M. R. Ladisch. 2001. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress 17(3): 474-480. https://doi.org/10.1021/bp010028u
  13. Pereira F. B., P. M. R. Guimaraes, J. A. Teixeira, and L. Domingues. 2010. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology 101: 7856-7863. https://doi.org/10.1016/j.biortech.2010.04.082
  14. Shimada, M. and M. Takahashi. 1994. Biodegradation of cellulosic materials. In: Dekker, M. (Ed.), Wood and Cellulosic Chemistry. New York (Chapter 13).
  15. Inglett, G. E. 1970. Corn: Culture, Processing and Products. AVI Publishing Co., Westport, CT.
  16. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory.
  17. Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24: 475-486. https://doi.org/10.1016/S0961-9534(02)00148-4
  18. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production. Bioresource Technology 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  19. Cheung, S. W. and B. C. Anderson. 1997. Laboratory investigation of ethanol production from municipal primary waste water solids. Bioresource Technology 59: 81-86. https://doi.org/10.1016/S0960-8524(96)00109-5

Cited by

  1. Recovery of Catalyst Used in Oxalic Acid Pretreatment of Empty Fruit Bunch (EFB) and Bioethanol Production vol.41, pp.6, 2013, https://doi.org/10.5658/WOOD.2013.41.6.507
  2. Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.494
  3. Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.389