• Title/Summary/Keyword: $Pd/TiO_2$

Search Result 119, Processing Time 0.021 seconds

Photocatalytic Dehydrogenation of Potassium Formate Over Pd/TiO2 (Pd/TiO2 촉매를 이용한 HCO2K 광 분해 반응)

  • JEON, MINA;CHOI, SU BIN;DOH, HYUNMI;PARK, HYUN S.;YOON, CHANG WON;NAM, SUK WOO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.447-452
    • /
    • 2017
  • A $Pd/TiO_2$ catalyst was prepared by a conventional impregnation method, and further characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The as-prepared material was employed to accelerate dehydrogenation of potassium formate in the presence of light at different temperatures. The $Pd/TiO_2$ catalyst showed distinct dehydrogenation activities, and particularly, the material exhibited a higher turnover frequency (TOF) of $2,097h^{-1}$ at $80^{\circ}C$ after 10 minutes in the presence of light compared to that (TOF of $1,477h^{-1}$) obtained in the absence of light. Numerous analytical techniques suggest that the increased dehydrogenation activity likely originates from light-excited electron and hole at the photocatalyst, i.e., $TiO_2$, in conjunction with metal-support interaction.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Photocatalytic Degradation of Trichloroethylene in Aqueous Phase (수중 Trichloroethylenel의 광촉매 분해특성에 관한 연구)

  • Jo, Sung-Hye;Nam, Ju-Hee;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.555-564
    • /
    • 2011
  • The photocatalytic degradation of trichloroethylene (TCE) in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ get at $500^{\circ}C$ for 1hr. The Langmuir-Hinshelwood model is applicable to describe the photodegradation, which indicates that adsorptionof the solute on the surface of $TiO_2$ particles plays an important role in photodegradation. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photodegradation efficiencies with $TiO_2$ including Pt, Pd and Nd are lower than pure $TiO_2$ powder. The effect of pH is investigated and the maximum photodegradation efficiency is obtained at pH 7. In addition, the intermediates such as dichloromethane, chloroform, and trichloroethane are detected during the photodegradation of TCE.

The Effects of Various Pretreatents on Cu Films Deposited on the TiN Substrate (전처리가 TiN 기판위의 Cu막의 특성에 미치는 효과)

  • Gwon, Yeong-Jae;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.6 no.1
    • /
    • pp.124-129
    • /
    • 1996
  • TiN 기판상에 CVD와 무전해 도금을 이용하여 구리막을 성장시킬 때 여러 가지 전처리에 따른 증착 양상의 변화에 관하여 조사하였다. Cu(hfac)2를 선재(precursor)로 사용하여 CVD 증착을 실시할 때 각 전처리에 따른 TiN상의 구리막의 덮힘성(coverage)향상은 Pd-HF 활성화 처리>>HF dip> RF remote plasma의 순이었다. 특히 Pd-HF 활성화 처리를 해줄 경우 거의 완전한 연속막을 얻을수 있었으며 scotch tape peel test 결과 매우 양호한 부착특성을 보였으나, 이에 비해 전처리를 해주지 않은 경우에는 오랜 시간이 경과되어도 연속막으로 성장하지 못하고 섬모양의 큰 결정립을 이룰 뿐이었다. 이러한 차이는 Pd-HF 활성화 처리에 의해 표면에 미세하게 형성된 Pd층이 구리의 핵생성과 부착특성을 크게 향상시켰기 때문인 것으로 사료되며 이러한 효과는 무전해 도금의 경우에도 마찬가지였다. 그리고 기판과 증착온도에 따른 선택성을 보면 35$0^{\circ}C$이하에서는 pd-HF 활성화 처리에 의해서 SiO2에 대하여 TiN으로의 선택성을 가지나 그 이상의 온도에서는 선택성이 상실되었다.

  • PDF

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile (아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성)

  • Park, Young-Ho;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

  • PDF

Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts (나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용)

  • Kim, Min-Sung;Lee, Jiyeon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this study, we synthesized $TiO_2$ supports with nanosized crystalline structure by solvothermal method and prepared $TiO_2$ supported Pd-Cu catalysts. It was shown that the crystalline size of $TiO_2$ support in the catalyst influenced on the catalytic activity of nitrate reduction in water. The catalyst with the smaller crystalline size of $TiO_2$ support presented faster nitrate reduction rate, but had low nitrogen selectivity due to high pH environment of reaction medium during the reaction. Through injection of carbon dioxide as a pH buffer, the nitrogen selectivity increased by about 60%. Furthermore, we investigated that the relationships between the catalytic performance and the physicochemical properties of the prepared catalysts characterized by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS).

Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation (상온 이온성액체를 이용한 호기성 벤질 알코올 산화반응용 Pd/TiO2 촉매 제조)

  • Cho, Tae Jun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.351-355
    • /
    • 2015
  • $Pd/TiO_2$ catalysts for aerobic benzyl alcohol oxidation were synthesized and eight different room temperature ionic liquids were used to control the palladium properties as active sites. $Pd/TiO_2$ particles were also calcined at 300, 400 and $500^{\circ}C$ to obtain an optimum catalyst. As the calcination temperature increased, the surface area and pore volume of catalyst decreased, but negligible changes were observed for the pore size of catalyst. However, the structural properties of catalyst varied with respect to the type of ionic liquids. Under identical reaction conditions, different catalytic activities were obtained depending upon the calcination temperature and type of ionic liquids. Mostly, the catalyst calcined at $400^{\circ}C$ showed higher catalytic activity than those at other temperatures. However, the catalyst prepared with 1-octyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium trifluoromethanesulfonate showed good catalytic performance after calcination at $300^{\circ}C$. Among the catalyst, $Pd/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate and calcined at $400^{\circ}C$ showed the highest catalytic activity.

Synergistic Effect on the Photocatalytic Degradation of 2-Chlorophenol Using $TiO_2$Thin Films Doped with Some Transition Metals in Water

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1183-1191
    • /
    • 2001
  • The metallorganic chemical vapor deposition (MOCVD) method has been used to prepare TiO2 thin films for the degradation of hazardous organic compounds, such as 2-chlorophenol (2-CP). The effect of supporting materials and metal doping on the photocatalytic activity of TiO2 thin films also has been studied. TiO2 thin films were coated onto various supporting materials, including stainless steel cloth(SS), quartz glass tube (QGT), and silica gel (SG). Transition metals, such as Pd(II), Pt(IV), Nd(III) and Fe(III), were doped onto TiO2 thin film. The results indicate that Nd(Ⅲ) doping improves the photodegradation of 2-CP. Among all supporting materials studied, SS(37 ${\mu}m)$ appears to be the best support. An optimal amount of doping material at 1.0 percent (w/w) of TiO2-substrate thin film gives the best photodegration of 2-CP.

Photodecomposition Properties of Formaldehyde Using PS Nanofiber and Photocatalyst (극세섬유와 광촉매를 이용한 포름알데히드의 광분해 특성)

  • An H.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.1-6
    • /
    • 2006
  • In this study we proposed on effect of the photodecomcomposition of coated nanofiber by $Pd/TiO_2$ for the removal of formaldehyde gas as indoor air pollutant. The photocatalytic reactor was setup in the inside of rectangular box (volume 2 l), UV lamp and the coating nanofiber with $Pd/TiO_2$. This study investigated the reaction rate and the adsorption constant of Langmuir-Heinshelwood, conversion of formaldehyde gas on temperature ($40^{\circ}C{\sim}80^{\circ}C$), effect of conversion (%) under different concentration, and effect of conversion (%) with humidity level on added $SO_2$ gas. As results, the rate constant (k) and adsorption constant (ft) were 114.94ppmv/min, $0.0036ppmv^{-1}$, respectively. and the conversion (%) of formaldehyde gas on temperature ($40^{\circ}C{\sim}80^{\circ}C$) was decreased to about 24%, compare with the first conversion (%). In conversion effect of increasing humidity levels, the presence of sulfur dioxide further decreased than without sulfur dioxide. the decreasing reason of conversion with presence sulfur dioxide judged as a cause of interference factor on the decrease of contact chance with photocatalysts.

  • PDF