DOI QR코드

DOI QR Code

Photocatalytic Dehydrogenation of Potassium Formate Over Pd/TiO2

Pd/TiO2 촉매를 이용한 HCO2K 광 분해 반응

  • JEON, MINA (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • CHOI, SU BIN (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • DOH, HYUNMI (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • PARK, HYUN S. (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • YOON, CHANG WON (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • NAM, SUK WOO (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • 전미나 (한국과학기술연구원 연료전지연구센터) ;
  • 최수빈 (한국과학기술연구원 연료전지연구센터) ;
  • 도현미 (한국과학기술연구원 연료전지연구센터) ;
  • 박현서 (한국과학기술연구원 연료전지연구센터) ;
  • 윤창원 (한국과학기술연구원 연료전지연구센터) ;
  • 남석우 (한국과학기술연구원 연료전지연구센터)
  • Received : 2017.09.28
  • Accepted : 2017.10.30
  • Published : 2017.10.30

Abstract

A $Pd/TiO_2$ catalyst was prepared by a conventional impregnation method, and further characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The as-prepared material was employed to accelerate dehydrogenation of potassium formate in the presence of light at different temperatures. The $Pd/TiO_2$ catalyst showed distinct dehydrogenation activities, and particularly, the material exhibited a higher turnover frequency (TOF) of $2,097h^{-1}$ at $80^{\circ}C$ after 10 minutes in the presence of light compared to that (TOF of $1,477h^{-1}$) obtained in the absence of light. Numerous analytical techniques suggest that the increased dehydrogenation activity likely originates from light-excited electron and hole at the photocatalyst, i.e., $TiO_2$, in conjunction with metal-support interaction.

Keywords

References

  1. N. Armaroli and V. Balzani, "The Future of Energy Supply: Challenges and Opportunities", Angew. Chem. Int. Ed., Vol. 46, 2007, p. 52. https://doi.org/10.1002/anie.200602373
  2. M. Dadfarnia, P. Novak, D. C. Ahn, J. B. Liu, P. Sofronis, D. D. Johnson, and I. M. Robertson, "Recent advances in the study of structural materials compatibility with hydrogen", Adv. Mater., Vol. 22, 2010, p. 1128. https://doi.org/10.1002/adma.200904354
  3. Y. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, and H. Hayashi, "Hydrogen generation using sodium borohydride solution and metal catalyst coated on metaloxide", Int. J. Hydrogen Energy, Vol. 27, No. 10, 2002, p. 1029. https://doi.org/10.1016/S0360-3199(02)00014-9
  4. S. S. Muir and X. Yao, "Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems", Int. J. Hydrogen Energy, Vol. 36, No. 10, 2011, p. 5983. https://doi.org/10.1016/j.ijhydene.2011.02.032
  5. U. Sanyal, U. B. Demirci, B. R. Jagirdar, and P. Miele, "Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions toward simple mentation", Chem. Sus. Chem., Vol. 4, No. 12, 2011, p. 1731. https://doi.org/10.1002/cssc.201100318
  6. H. L. Jiang and Q. Xu, "Catalytic hydrolysis of ammonia borane for chemical hydrogen storage", Catal. Today, Vol. 170, No. 1, 2011, p. 56. https://doi.org/10.1016/j.cattod.2010.09.019
  7. Y. Kim, Y. Kim, S. Yeo, K. Kim, K. J. E. Koh, J. E. Seo, S. J. Shin, D. K. Choi, C. W. Yoon, and S.W. Nam, "Development of a continuous hydrogen generator fueled by ammonia borane for portable fuel cell applications", J. Power Sources, Vol. 229, 2013, p.170. https://doi.org/10.1016/j.jpowsour.2012.11.045
  8. M. Grasemann and G. Laurenczy, "Formic acid as a hydrogen source - recent developments andfuture trends", Energy Environ. Sci., Vol. 5, 2012, p. 8171. https://doi.org/10.1039/c2ee21928j
  9. B. Loges, A. Boddien, F. Gartner, H. Junge, and M. Beller, "Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials", Top. Catal., Vol. 53, 2010, p. 902. https://doi.org/10.1007/s11244-010-9522-8
  10. J. H. Lee, J. Ryu, J. Y. Kim, S. W. Nam, J. H. Han, T. H. Lim, S. Gautam, K. H. Chae, and C. W. Yoon, "Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride", J. Mater. Chem. A, Vol. 2, 2014, p. 9490. https://doi.org/10.1039/c4ta01133c
  11. A. Gazsi, G. Schubert, P. Pusztai, and F. Solymosi, "Photocatalytic decomposition of formic acid and methyl formate on $TiO_2$ doped with N and promoted with Au. Production of H2", Int. J. Hydrogen Ener., Vol. 38, 2013, p. 7756. https://doi.org/10.1016/j.ijhydene.2013.04.097
  12. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, and Z. Y. Li, "Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process", Nano Lett., Vol. 5, No. 7, 2005, p. 1237. https://doi.org/10.1021/nl0508826
  13. M. Wang, D. Guo, and H. Lin, "High activity of novel Pd/$TiO_2$ nanotube catalysts for methanol electro-oxidation", J. Solid State Chem., Vol. 178, No. 6, 2005, p. 1996. https://doi.org/10.1016/j.jssc.2005.04.006