• Title/Summary/Keyword: $PO{_4}^{3-}-P$

Search Result 1,164, Processing Time 0.029 seconds

Relationships between pH, $NO_3{^-}$ and $PO{_4}^{3-}$ and phytoplankton distribution in the upper stream of Dorim-cheon (도림천 상류의 pH, $NO_3{^-}$, $PO{_4}^{3-}$와 식물성 플랑크톤 분포와의 관계)

  • Kim, Jae Geun;Kim, Taehyeon;Yoo, Jimin;Lee, Juyeon
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.255-263
    • /
    • 2012
  • The stream has various environments and they are serving as main habitats of aquatic organisms. The distribution of phytoplankton is affected by water environment, especially pH, nitrogen and phosphorus. To reveal the relationship between phytoplankton distribution and water environment, we measured pH, $NO_3{^-}$ and $PO{_4}^{3-}$ concentration, and abundance of phytoplankton at 10 sites in the upper stream of Dorim-cheon. pH value ranged 5.05 to 7.56. $NO_3{^-}$ and $PO{_4}^{3-}$ concentrations ranged 0.4 ~ 4.9ppm and 0.02 ~ 0.99ppm, respectively. A point source of $NO_3{^-}$ was Seoul National University but concentration was not high and dropped to normal range at 400m downstream. $NO_3{^-}/PO{_4}^{3-}$ ratio ranged 28 to 152 except site 4 (0.4) where was affected by $PO{_4}^{3-}$ point source. Water pH, $NO_3{^-}$ and $PO{_4}^{3-}$ concentrations increased with downstream and were related to the input of irrigation water from Han-river between site 5 and 6. Bacillariophyceae alge dominated this stream. Phytoplankton density increased abruptly at downstream of site 5. In general, phytoplankton density did not increase until the $NO_3{^-}$ concentration of 3.5ppm and $PO{_4}^{3-}$ concentration of 0.07ppm. Phytoplankton density was low at sites where $NO_3{^-}/PO{_4}^{3-}$ ratio was larger than 50.

A Study on recycling of waste concrete for ${PO}_4^{3-}$-P removal contained in livestock wastewater (축산폐수에 함유된 ${PO}_4^{3-}$-P의 제거를 위한 폐콘크리트의 재활용에 관한 연구)

  • 김은호;박진식;성낙창;이영형;신남철;전기일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1999
  • This study was conducted to investigate the removal characteristics of $PO_4^{3-}-P$ contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, $PO_4^{3-}-P$ was well removed by waste concrete.$PO_4^{3-}-P$ was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, $PO_4^{3-}-P$ removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concreter surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction.

  • PDF

Management of Nutrient Solution Based on $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$Concentration in Deep Flow Culture of Cherry Tomato (방울토마토 담액재배시 $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ 농도에 기초한 배양액 조절)

  • 이문정;김성은;김영식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.188-194
    • /
    • 1995
  • This study was carried out to investigate the effect of NH$_4$H$_2$PO$_4$ on pH stabilization in deep flow culture system using tap water, and to determine the optimum range of NH$_4$H$_2$PO$_4$ in culture solution. The pH of tap water is 7.5. The higher the concentration of NH$_4$H$_2$PO$_4$ was, the more the pH of nutrient solution was decreased. In NH$_4$H$_2$PO$_4$ 4/3-5/3 me/$\ell$, the pH of nutrient solution was 6-7.5 during the experiment. The highest brix(%) was obtained in NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$. Leaf length, leaf width and stem-base diameter were highest in NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$. The L and b* values were highest and the a* value was lowest in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. Toxicity symptom of ammonium appeared in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. It suggests that there was the relationship between leaf color and growth condition. It was concluded that NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$ was good before harvest stage and NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$ at harvest stage.

  • PDF

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

Study on Adsorption of PO43--P in Water using Activated Clay (활성 백토를 이용한 수중의 인산성 인(PO43--P) 흡착에 관한 연구)

  • Hwang, Ji Young;Jin, Ye Ji;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.197-202
    • /
    • 2021
  • In this study, activated clay treated with H2SO4 (20% by weight) and heat at 90 ℃ for 8 h for acid white soil was used as an adsorbent for the removal of PO43--P in water. Prior to the adsorption experiment, the characteristics of activated clay was examined by X-ray Fluorescence Spectrometry (XRF) and BET surface area analyser. The adsorption of PO43--P on activated clay was steeply increased within 0.25 h and reached equilibrium at 4 h. At 5 mg/L of low PO43--P concentration, roughly 98% of adsorption efficiency was accomplished by activated clay. The adsorption data of PO43--P were introduced to the adsorption isotherm and kinetic models. It was seen that both Freundlich and Langmuir isotherms were applied well to describe the adsorption behavior of PO43--P on activated clay. For adsorption PO43--P on activated clay, the Freundlich and Langmuir isotherm coefficients, KF and Q, were found to be 8.3 and 20.0 mg/g, respectively. The pseudo-second-order kinetics model was more suitable for adsorption of PO43--P in water/activated clay system owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal than the pseudo-first-order kinetics model. The results of study indicate that activated clay could be used as an efficient adsorbent for the removal of PO43-P from water.

Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2 (Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향)

  • An, Suk-Jin;Lee, Sun-Young;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI) (축전식 탈염 공정의 액상 유기물에 따른 질소(N) 및 인(P) 처리 특성)

  • Lee, Bo-Ram;Jeong, In-Jo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • Organic carbons such as methanol, ethanol, iso-propanol, methoxy ethanol, glucose are added(1, 2, 3%) in the 2000 ppm $NH_3$ and $H_3PO_4$. As vol.%. cyclic voltammetry measurement of the capacity with the addition of organic carbon, the results of $NH_3$ + 3 vol.% Methanol Addition, $H_3PO_4$ + 2 vol.% iso-propanol addition of the increase in capacity was observed. Applying to the CDI Module cell with an addiction of organic carbon is confirm that remove $NH_4$-N and $PO_4$-P in sewage. Namely, the removal efficiency of $NH_3$ was increase of 16.4% during adsorption, 30.4% during desorption and the removal efficiency of $H_3PO_4$ was increase of 63% during adsorption, 54.7% during desorption. Therefore, the result of this research is confirm that effect of the N, P removal and considered that reduction of the operating costs without removing the organic matter in the influent wastewater.

Evaluation of Phosphorus Removal Efficiency at Various Coagulation Conditions Using Polyaluminum Chloride with Different Al Contents (Al 함량이 다른 PAC를 이용한 응집 조건 별 인 제거효율 평가)

  • Jeong-Hak Choi;Geon-Gon Yoon;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.731-739
    • /
    • 2023
  • In this study, lab-scale phosphorus coagulation/precipitation experiments were performed using three types of polyaluminum chloride (PAC) with different Al contents (10%, 12%, and 17%). The PO4-P removal efficiencies at various operating conditions, such as initial PO4-P concentration, initial pH, and Al/P molar ratio, were evaluated, and correlations among the operating factors affecting phosphorus coagulation/precipitation with PAC were derived to optimize the process efficiency. When the initial PO4-P concentration was 0.065 and 0.161 mmol P/L under an initial pH of 8-10, the optimal PAC dose was 0.126-0.378 and 0.189-0.667 mmol Al/L, respectively. Under these conditions, the Al/P molar ratio was 2.16-6.18 and 1.28-4.30, respectively, and the PO4-P removal efficiency was in the range of 40.2-92.5%. When the Al/P molar ratio was 2 or less under an initial pH condition of 6-8, the PO4-P removal efficiency was approximately ≤40% owing to insufficient Al3+ ions. However, when the Al/P molar ratio is 3-5, the PO4-P removal efficiency improved to approximately 80-90%. Thus, the optimal Al/P molar ratio to achieve a PO4-P removal efficiency of over 90% was determined to be approximately 4 in the PO4-P coagulation/precipitation process using PAC.

Pretreatment of Livestock Wastewater containing PO4-3-P with Waste Oyster Shells (폐굴껍질을 이용한 축산폐수중 무기인의 1차 처리)

  • Kim, Eun-Ho;Kim, Seok-Tack;Jang, Sung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.48-53
    • /
    • 1999
  • In this study, various batch tests were performed to examine the utilization of waste oyster shells for removal of $PO_4^{3-}-P$ in livestock wastewater, because waste oyster shells have been known to be very porous and to have alkaline minerals such as calcium and mangnesium. $PO_4^{3-}-P$ removal rate were increased by waste oyster shells, as specific surface area and contact efficiency per unit area of their were increased. Generally, it could be showed that $PO_4^{3-}-P$ removal rate were very influenced by particle size, dosage and temperature. At low pH of initial reactions, it would be showed that $PO_4^{3-}-P$ removals were directly influenced by adsorption but crystallization process were dominated with passed time and pH increasing. The SEM observed that the variations were hardly seen, but particle sizes of waste oyster shell were relatively big after reactions and showed forms of smaller plate than before reactions.

  • PDF

Synthesis of Hydroxycalciumphosphate (수산화 인산칼슘의 합성)

  • Hwang, Young-Gil;Kim, Youn-Soo;Kim, Jae-Il
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.50-55
    • /
    • 1996
  • The synthesis of Ca,,(PO,),(OH), by adding (NFIa)J),HPO, to lhe solution of Ca(NO,), dlssolvad CaO in HNO, and contmlled pH with NH,OH was carried out for certain time at room temperahire and atmosphere. Ca,,(PO,),(OH), was rorrned at the range from pN 10 to pH 13. The particle s~zeof Ca,,(PO,),(OH)i was 0.1-0.5 &In. Thc optimum reaction lime was 30 min, and the temperature was 40-70$^{\circ}$C. the shape also was not changed in spite of heating to iDVC hr 1 hour the c~ystalliratian temperature was 90$^{\circ}$C Ca,,(PO,),(OH), was calcinatcd and the shape also was not changzd, in spile of hcaling to 500$^{\circ}$C for 1 hour. But Ca,,(PO,),(OH), calcinated for lhour al 800$^{\circ}$C was changed to the spheric particle of Ca,,,(PO,),(OH),, CaO and Ca,(PO,),.

  • PDF