• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.031 seconds

Fabrication of MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si Substrate for Pyroelectric IR Sensor (초전형 적외선 센서를 위한 MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si 기판 제작)

  • Kim, Sung-Woo;Sung, Se-Kyoung;Ryu, Jee-Youl;Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-95
    • /
    • 2000
  • The substrate for pyroelectric IR sensor which has orientation similar to MgO single crystal was fabricated by depositing the MgO thin film on $Si_3N_4/SiO_2/Si_3N_4$/Si. The MgO thin film was deposited by RF magnetron sputtering. The c-axis orientation of PLT thin film deposited on Pt/MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si substrate was investigated. The MgO thin film deposited at $500^{\circ}C$ at a gas pressure of 30 mTorr with RF power of 160 W exhibited a good a-axis orientation. The PLT thin films deposited on these substrates also exhibited c-axis orientation similar to the PLT thin films deposited on MgO single crystal substrate.

  • PDF

Fabrication and Temperature Compensation of Silicon Piezoresistive Absolute Pressure Sensor for Gas Leakage Alarm System (가스누출 감지용 실리콘 압저항형 절대압센서의 제조 및 온도보상)

  • Son, Seung-Hyun;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.171-178
    • /
    • 1998
  • Silicon piezoresistive absolute pressure sensor for gas leakage alarm system was developed. This sensor must operate normally in the range of $0{\sim}600\;mmH_{2}O$ pressure, and $0{\sim}100^{\circ}C$ temperature. To make the most of this sensor for gas leakage alarm system, gas must not leak from the sensor itself when the diaphragm of the sensor fractures. Thus, the sealed diaphragm cavity was anodically bonded to pyrex 7740 glass under the condition of $10^{-4}$ torr, at $400^{\circ}C$. The sensitivity of developed sensor was $4.06{\mu}V/VmmH_{2}O$ for $600\;mmH_{2}O$ full-scale pressure range. And temperature compensation method of this sensor is to change bridge-in put-voltage linearly in proportion to the temperature variation by using diode(PXIN4001) or Al thin film resistor. By these methods the temperature effect in the range of $0{\sim}100^{\circ}C$ was compensated over 80 % for offset drift, 95 % for sensitivity.

  • PDF

Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2 Thin Films

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.152-158
    • /
    • 2014
  • We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of $SnO_2$ thin films deposited on self-assembled Au nanodots ($SnO_2$/Au) that were formed on $SiO_2/Si$ substrates. We characterized structural and morphological properties, comparing them to those of $SnO_2$ thin films deposited directly onto $SiO_2/Si$ substrates. We observed a significant enhancement of CO gas sensing properties in the $SnO_2$/Au gas sensors, specifically exhibiting a high maximum response at $200^{\circ}C$ and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the $SnO_2/Au$ gas sensor was found to reach the maximum value of 32.5 at $200^{\circ}C$, which is roughly 27 times higher than the response (~1.2) of the $SnO_2$ gas sensor obtained at the same operating temperature of $200^{\circ}C$. Furthermore, the $SnO_2/Au$ gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the $SnO_2/Au$ sensors is mainly ascribed to the formation of a nanostructured morphology in the active $SnO_2$ layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

SOx Sensor Using NASICON Solid Electrolyte (NASICON 고체 전해질을 사용한 SOx 가스 감지센서)

  • Choi, Soon-Don;Lee, Kwang-Beum
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.25-34
    • /
    • 1996
  • A SOx sensor using NASICON electrolyte was developed for monitoring of air pollution. The following galvanic cell with $Na_{2}SiO_{3}(Pt)$ reference electrode was assembled : Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $Na_{2}SO_{4}$ was used as an indicator electrode to protect NASICON electrolytes from chemical reaction with $SO_{2}$. The EMFs were measured after injecting $SO_{2}$ in the initial concentrations range of $5{\sim}95ppm$ at $400{\sim}550^{\circ}C$. The measured and calculated potentials were in good agreement above $500^{\circ}C$. However, the cells were unstable below $500^{\circ}C$, most likely due to incomplete attainment of chemical equilibrium. Response time was within 10 min. Based on the stability and response time of this cell, the NASICON solid electrolyte with $Na_{2}SiO_{3}(Pt)$ as the reference electrode and $Na_{2}SO_{4}$ (Pt)as the indicator electrode showed the possibility of a reliable, inexpensive commercial solid-state SOx sensor.

  • PDF

Characteristics of PLT Thin Films on MgO Substrates and Fabrication of Infrared Sensor (MgO 기판 위에 올린 PLT 박막의 특성과 적외선 센서의 제작)

  • Cho, Sung-Hyun;Jung, Jae-Mun;Lee, Jae-Gon;Kim, Ki-Wan;Hahm, Sung-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.188-193
    • /
    • 1997
  • The lanthanum-modified lead titanate (PLT) thin films on (100) cleaved MgO single crystal substrate have been prepared by RF magnetron sputtering method using PbO-rich target with varing La contents. The substrate temperature, working pressure, $Ar/O_{2}$, and RF power density of PLT thin films were $580^{\circ}C$ 10mTorr, 10/1, and $1.7W/cm^{2}$, respectively. In these conditions, the c-axis growth and tetragonality of the PLT thin films decreased for addition of La content and the PLT thin films showed diffuse phase transition from high temperature XRD patterns. The infrared sensor was fabricated. The remanent polarization was above $1.71{\mu}C/cm^{2}$ and the pyroelectric voltage was above 500mV with 10:1 signal to noise ratio.

  • PDF

Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte (YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서)

  • Park, Jin-Su;Park, Kwang-Chol;Park, C.O.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO (ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구)

  • So-Young, Bak;Se-Hyeong, Lee;Chan-Yeong, Park;Dongki, Baek;Moonsuk, Yi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.

Electrogenerated Chemiluminescence Sensor Based on Tris(2,2'-bipyridyl) ruthenium(II) Immobilized in the Composite Film of Multi-walled Carbon Nanotube/Sol-gel Zinc oxide/Nafion

  • Choi, Eun-Jung;Kang, Chang-Hoon;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2387-2392
    • /
    • 2009
  • A composite film of multi-walled carbon nanotube (MWCNT)/sol-gel-derived zinc oxide(ZnO)/Nafion has been utilized as an efficient immobilization matrix for the construction of a highly sensitive and stable tris(2,2'-bipyridyl) ruthenium(II) (Ru(${bpy)_3}^{2+})$ electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behaviors of Ru(${bpy)_3}^{2+})$ ion-exchanged into the composite film were strongly dependent upon the sol-gel preparation condition, the amount of MWCNT incorporated into the ZnO/Nafion composite film, and the buffer solution pH. The synergistic effect of MWCNTs and ZnO in the composite films increased not only the sensitivity but also the long-term stability of the ECL sensor. The present ECL sensor based on the MWCNT/ZnO/Nafion gave a linear response ($R^2$ = 0.999) for tripropylamine concentration from 500 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 15 nM. The present ECL sensor showed outstanding long-term stability (94% initial signal retained for 5 weeks). Since the present ECL sensor exhibits large response towards NADH, it could be applied as a transduction platform for the ECL biosensor in which the NADH is produced from the dehydrogenase-based enzymatic reaction in the presence of NA$D^+$ cofactor.