• Title/Summary/Keyword: $OH^-$

Search Result 66,821, Processing Time 0.095 seconds

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun;Jeong, Hyun-Joo;Lee, Sang-Do;Kong, Seok-Heui;Ohk, Seung-Ho;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Sohn, Byung-Wha;Lee, Syng-Ill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.169-176
    • /
    • 2010
  • The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

The Fok1 Vitamin D Receptor Gene Polymorphism and 25(OH) D Serum Levels and Prostate Cancer among Jordanian Men

  • Atoum, Manar Fayiz;AlKateeb, Dena;Mahmoud, Sameer Ahmed AlHaj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2227-2230
    • /
    • 2015
  • Background: Prostate cancer (PCa) is one of the most commonly diagnosed neoplasms and the second leading cause of cancer death in men in the Western world. Vitamin D (1,25dihydroxy vitamin D) is linked to many biological processes that influence oncogenesis but data on relations between its genetic variants and cancer risk have been inconsistent. The aim of this study was to determine associations between a vitamin D genetic polymorphism and 25-hydroxyvitamin D [25(OH)D] levels and prostate cancer. Materials and Methods: Genomic DNA was extracted from 124 Jordanian prostate cancer patients and 100 healthy volunteers. Ethical approval was granted from the ethical committee at Hashemite University and written consent was given by all patients. PCR was used to amplify the vitamin D receptor Fok1 polymorphism fragment. 25(OH)D serum levels were measured by competitive immunoassay. Results: All genotypes were in Hardy-Weinberg equilibrium. Genotype frequency for Fok1 genotypes FF, Ff and ff was 30.7%, 61.3% and 8.06%, for prostate cancer patients, while frequencies for the control group was 28.0%, 66.0% and 6.0%, respectively, with no significant differences. Vitamin D serum level was significantly lower in prostate cancer patients (mean 7.7 ng/ml) compared to the control group (21.8 ng/ml). No significant association was noted between 25(OH)D and VDR Fok1 gene polymorphism among Jordanians overall, but significant associations were evident among prostate cancer patients (FF, Ff and ff : 25(OH)D levels of 6.2, 8.2 and 9.9) and controls (19.0, 22.5 and 26.3, respectively). An inverse association was noted between 25(OH)D serum level less than 10ng/ml and prostate cancer risk (OR 35.5 and 95% CI 14.3- 88.0). Conclusions: There is strong inverse association between 25(OH)D serum level less than 10ng/ml level and prostate cancer risk.

Association Between Alterations in the Serum 25-Hydroxyvitamin D Status During Follow-Up and Breast Cancer Patient Prognosis

  • Lim, Seung Taek;Jeon, Ye Won;Suh, Young Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2507-2513
    • /
    • 2015
  • Background: Serum vitamin D status can affect the prognosis of breast cancer patients. Our aim was to determine the association between alterations in the 25-hydroxyvitamin D [25(OH)D] status during follow-up and the prognosis of breast cancer patients. Additionally, we evaluated the association between the 25(OH)D status at the time of diagnosis and the prognosis using a detailed age and stage categorization. Materials and Methods: Four hundred and sixty-nine Korean breast cancer patients were included. We collected patient clinicopathological data, including their serum 25(OH)D concentration at diagnosis and at the annual follow-up until 4 years after diagnosis. The patients were divided according to their 25(OH)D status at diagnosis into a deficient (<20 ng/ml) and a non-deficient (${\geq}20ng/ml$) group. At follow-up, patients were categorized into the four following groups according to 25(OH)D status alterations: persistently deficient, improved, deteriorated and persistently non-deficient. Results: At diagnosis, 118 patients were classified into the deficient group and 351 into the non-deficient group. After a median follow-up period of $85.8{\pm}31.0$ months, the patients with advanced-stage disease or an older age in the non-deficient group showed a significantly better survival compared with the deficient group. Furthermore, at the 1-year follow-up of 25(OH)D status, the persistently non-deficient group and the improved group had better survival compared with the other two groups. Conclusions: Our results suggest that maintaining an optimal 25(OH)D status at diagnosis and during the 1-year follow-up period is important for improving breast cancer patient survival.

Induction of Phytoalexins by Uptake of Naphthoquinones in Cell Cultures of Petunia (Naphthoquinone류 화합물 흡수에 의한 페튜니아 배양세포내의 Phytoalexin 유도)

  • Kim, Myong-Jo;Kwak, Sang-Soo
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.352-356
    • /
    • 1997
  • To induce the phytoalexins in plant cell culture systems, we surveyed the antimicrobial activity following the feeding of five naphthoquinones in cell cultures of petunia. Among naphthoquinones treated, 2,5,7-trihydroxy-3-(5'-hydroxyhexyl)-1,4-naphthoquinone (3-OH NQ ) was most efficiently absorbed into the cells within 48 hr. The crude extracts of cells treated with 3-OH NQ showed a strong inhibition activity on spore germination of Aspergillus candidus $(MIC:\;32\;{\mu}g/ml)$, whereas the untreated cells showed no activity. The two active compounds, 4,2',4',${\beta}$-tetrahydroxychalcone and 4',7-dihydroxyflavone, were isolated from petunia cells treated with 3-OH NQ. The major phytoalexin, 4,2',4',${\beta}$-tetrahydroxychalcone, inhibited strongly the spore germination of A. candidus $(MIC:\;16\;{\mu}g/ml)$.

  • PDF

Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment (정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Bin, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.296-308
    • /
    • 2010
  • The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and has highly removal efficiency. The key issue to operate peroxone process is developing the method to achieve high process effectiveness when scavengers that inhibit generation of OH radicals or consume OH radicals are co-existing in the process. Also many studies, to minimize inorganic oxidative by-products such as bromate and to reduce disinfection by-products after chlorination behind peroxone process, are needed. And we should consider the excess residual hydrogen peroxide in the water. On-line instruments and control strategies need to be developed to ensure effective and robust operation under conditions of varying load. If problems above mentioned are solved, peroxone process will be applied diversely for water treatment.

Vitamin D Sufficiency: How Should it be Defined and what are its Functional Indicators?

  • Hollis Broce W.
    • Nutritional Sciences
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2005
  • It has been more than three decades since the first assay assessing circulating 25 (OH)D in human subjects was performed That publication as well as several that followed it defined 'normal' nutritional vitamin D status in human populations. Recently, the wisdom by which 'normal' circulating 25 (OH)D levels in human subjects were assigned in the past has come under question. It appears that sampling human subjects, who appear to be free from disease, and assessing 'normal' circulating 25 (OH)D levels by plotting a Gaussian distribution is grossly inaccurate. There are many reasons why this method is inaccurate, including race, lifestyle habits, sunscreen usage, age, latitude, and inappropriately low dietary recommendations for vitamin D. For instance, a 400 IU/day. AI for vitamin D is insignificant when one considers that a 10-15 minute whole body exposure to peak summer sun will generate and release up to 20,000 IU vitamin $D_3$ into the circulation. Recent studies, which orally administered up to 10,000 IU/day vitamin $D_3$ to human subjects for several months, have successfully elevated circulating 25 (OH)D levels to those observed in individuals from sun-rich environments. Further, we are now able to accurately assess sufficient circulating 25 (OH)D levels utilizing specific biomarkers instead of guessing what an adequate level is. These biomarkers include intact parathyroid hormone (PTH), calcium absorption, bone mineral density (BMD), insulin resistance and pancreatic beta cell function. Using the data from these biomarkers, vitamin D deficiency should be defined as circulating levels of 25 (OH)D$\leq$30 ng/mL. In certain cases, such as pregnancy and lactation, significantly higher circulating 25 (OH)D levels would almost certainly be beneficial to both the mother and recipient fetus/infant.

Leaching behavior of rhenium and molybdenum from molybdenite roasting dust in NaOH solutions (휘수연석(輝水鉛石)의 배소(焙燒) 중 발생한 분경(粉慶)으로부터 NaOH에 의한 Rhenium과 Molybdenum의 침출(浸出))

  • Kim, Young-Uk;Kang, Jin-Gu;Sohn, Jeong-Soo;Cho, Bong-Gyu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • The demand for rhenium has considerably increased recently owing to the large-scale consumption in industries and the price of rhenium has increased owing to the lack of supply and its availability. The dust from the roasting of molybdenite was employed to investigate the leaching behavior of rhenium and molybdenum. Leaching experiments were done by varying optimum parameters, such as reaction time, NaOH concentration and leaching temperature. The optimum leaching condition was found to be $4\;mol{\cdot}L^{-1}$ NaOH, 2 hours leaching time, $100\;g{\cdot}L^{-1}$ solid/liquid ratio, $80^{\circ}C$ temperature, and 250 rpm. At this condition, leaching percentage of rhenium and molybdenum was 86.1% and 88.6%, respectively.

Effect of Surface Modification of Polyester Cord on the Adhesion of SBR/Polyester (폴리에스터 코드의 표면개질 조건이 SBR/폴리에스터의 접착에 미치는 영향)

  • Park, Y.S.;Chung, K.H.
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.75-85
    • /
    • 2007
  • In this study, the new adhesion system was studied to improve the adhesion strength between polyester cord and rubber matrix. In order to enhance the adhesion strength through polyester cord's surface treatment, the NaOH solution was used. The NaOH solution concentrations of 0.03, 0.05, 0.1, 0.2, 0.5, 1 and 5 wt.% were used in surface modifying the polyester cord. The optimum condition showing the maximum adhesion strength of polyester cord with SBR compound containing bonding agent was at NaOH concentration of 0.05 wt.% with treatment time of 10 minutes. When the NaOH solution concentration was above 1 wt.%, the polyester cord due to the excess surface modification was damaged, and resulted in breakage during the adhesion test. Also, the adhesion strength between polyester and SBR could be improved by coating the polyester cord with triallylcyanurate(TC) adhesive. The drying condition of polyester cord coated with TC attributed to the adhesion strength. The maximum adhesion strength was obtained by using the polyester cord dried at $220^{\circ}C$ rather than dried at room temperature.

Effects of NaOH and Humic Acid on the UV Photolysis of PCBs (PCBs의 광화학적 연구: NaOH 및 휴믹산 (humic acid, HA)에 의한 분해특성)

  • Shin, Hae Seung;Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.147-156
    • /
    • 2014
  • Objectives: This study was carried out to examine whether the apparent photolysis with or without sensitizers [NaOH and humic acid (HA)] was prompted photodegradation of polychlorinated biphenyl (PCB) in aqueous solution. Methods: PCBs photodegradation occurred using fluorescence black lamps at ${\lambda}_{max}=300nm$. PCB congeners were exposed in 10 ppm HA or 0.05N NaOH solutions, to investigate the decreasing profile of PCB concentration with time. The PCBs were then analyzed by gas chromatography/mass spectrometry (GC-MS). Reductive degradation profile of PCB congeners in the presence of both sensitizers under oxygen-saturated protic conditions was described using the wind-rose diagrams. Results: Use of HA or NaOH decreased PCB concentration with time in the dark and on irradiation, indicating that photolysis underwent through reductive dechlorination through energy transfer and possibly with reactive oxygens. The dechlorination was marked by a chromatographic shift, observed in the GC-MS plots. Therefore it is logical to assume that increasing the dose of sensitizers would increase the photodegradation rates of PCBs. The half-lives of pentachloro-PCB (penta-3) in 0.05N NaOH and 10 ppm HA were estimated at about 47 hours and 39 hours, respectively, under the same experimental conditions of photolysis. It was found that the rate of photolysis of pentachloro-PCB in aqueous solution followed apparent first-order kinetics compared to other congeners. Conclusion: Photochemical degradation (using 328 nm UV light) of penta- and hexa-PCBs in HA or alkaline solution is a viable method for pretreatment method. The results are helpful for the further comprehension of the reaction mechanism for photolytic dechlorination of PCBs in aquatic system.

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young;Sin, Seung Mi;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.