• Title/Summary/Keyword: $Ni_2O_3$

Search Result 1,942, Processing Time 0.027 seconds

Ni/ZnO-based Adsorbents Supported on Al2O3, SiO2, TiO2, ZrO2: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption

  • Meng, Xuan;Huang, Huan;Weng, Huixin;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3213-3217
    • /
    • 2012
  • Reactive adsorption desulfurization (RADS) experiments were conducted over a series of commercial metal oxide supports ($Al_2O_{3-}$, $SiO_{2-}$, $TiO_{2-}$ and $ZrO_{2-}$) supported Ni/ZnO adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Fourier transform infrared spectroscopy (FTIR) in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The desulfurization performance of all the studied adsorbents decreased in the following order: Ni/ZnO-$TiO_2$ > Ni/ZnO-$ZrO_2$ > Ni/ZnO-$SiO_2$ > Ni/ZnO-$Al_2O_3$. Ni/ZnO-$TiO_2$ shows the best performance and the three hour sulfur capacity can achieve 12.34 mg S/g adsorbent with a WHSV of $4h^{-1}$. Various characterization techniques suggest that weak interaction between active component and support component, high dispersion of NiO and ZnO, high reducibility and large total Lewis acidity of the adsorbents are important factors in achieving better RADS performance.

Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods (분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가)

  • Gun-Woo Jung;Ji-Ho Cha;Min-Seo Jang;Minsuk Oh;Jeshin Park
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-NiO-Cr2O3 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.689-695
    • /
    • 2012
  • We have examined the co-doping effects of 1/2 mol% NiO and 1/4 mol% $Cr_2O_3$ (Ni:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Ni,Cr-doped ZBS, ZBS(NiCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were detected for all of compositions. For the sample with Sb/Bi = 1.0, the Pyrochlore was decomposed and promoted densification at lower temperature by Ni rather than by Cr. A homogeneous microstructure was obtained for all of the samples affected by ${\alpha}$-spinel. The varistor characteristics were not dramatically improved (non-linear coefficient, ${\alpha}$ = 5~24), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.17 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to have been divided into two types, i.e., one is tentatively assigned to ZnO/$Bi_2O_3$ (Ni,Cr)/ZnO (0.98 eV) and the other is assigned to a ZnO/ZnO (~1.5 eV) homojunction.

Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3 (Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Effect of NiO Addition on Dielectric Properties of BaTiO3 Ceramics (NiO 첨가가 BaTiO3 세라믹스의 유전특성에 미치는 영향)

  • 김윤호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • BaTiO3 의 B-site에 0-0.03 몰 범위의 NiO를 첨가한 Ba1-xSrxTi1-y-wNiyZrwO3-y 유전 체에서 NiO 첨가가 유전특성 및 절연저항의 내환원성에 미치는 영향을 조사하였다. B-site Ni 치환에 의해 a 축의 격자상수는 증가하고 c 축의 격자상수는 감소하여 정방성 c/a가 감 소하였으며 단위격자의 부피는 증가하였다. NiO 첨가에 따라 큐리온도는 저온으로 이동하 였으며 큐리온도의 변화율은 소결분위기에 영향을 받았다. NiO가 첨가되지 않은 조성에서 는 산소분압 109 MPa의 환원분위기 소성에 의해 비정항이 107$\Omega$.cm로 저하되었으나 0.01 몰이상의 NiO를 첨가한 조성에서는 공기중 소결시 얻을수 있었던 1011$\Omega$.cm로 저하되었으 나 0.01 몰 이상의 NiO를 첨가한 조성에서는 공기중 소결시 얻을 수 있었던 1011$\Omega$.cm 이 상의 비저항을 유지하였다.

Hot Corrosion of NiCrAlY/(ZrO2-CeO2-Y2O3) Composite Coatings in Molten Salt (내열복합코팅 NiCrAlY/(ZrO2-CeO2-Y2O3)의 용융염 부식)

  • Lee, Jae-Ho;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.116-116
    • /
    • 2013
  • (Ni-22Cr-10Al-1Y)와 ($ZrO_2-25CeO_2-2.5Y_2O_3$)로 구성되는 금속/세라믹 복합코팅을 대기용사(ASP; air plasma spay)으로 철 기판위에 1:3, 2:2, 3:1의 무게비로 혼합하여 제조하였다. 용사된 코팅은 금속이영지역과 세라믹잉여지역으로 구별되고, 용사중에 NiCrAlY중의 Al이 선택적으로 산화되어 Al2O3가 계면에 존재하였다. 복합코팅은 $NaCl-Na_2SO_4$ 용융염에서 $800{\sim}900^{\circ}C$, 50시간 동안 부식실험을 실시하였다. 부식생성물은 NiO, $Cr_2O_3$, ${\alpha}-Al_2O_3$가 생성되는데, 부식이 진행되면서 용해되었다. 용융염 부식이 진행되는 동안에 Cr, Al이 외방확산하였고, Na, Cl, S는 내부로 확산되었다. 시간 및 온도뿐만 아니라 금속의 양이 증가할수록 코팅의 내식성은 저하되었다.

  • PDF

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2

  • Kim, Seong-Soo;Kim, Jeong Wook;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3387-3390
    • /
    • 2013
  • Catalytic gasification of mandarin waste residue was carried out using direct and indirect catalyst-contact methods for the first time. In the indirect method, non-catalytic reaction in a reactor was followed by catalytic upgrading of vapor product in another reactor. Two different catalysts, $Ni/{\gamma}-Al_2O_3$ and $Ni/CeO_2-ZrO_2$, were employed. $CeO_2-ZrO_2$ support was prepared using hydrothermal synthesis in supercritical water. The catalysts were characterized by $H_2$-temperature programmed reduction and Brunauer-Emmett-Teller analyses. Under the condition of equivalent ratio (ER) = 0, the indirect catalyst-contact method led to a higher gas yield than the direct method. Under ER = 0.2, the yield of biogas obtained over $Ni/CeO_2-ZrO_2$ was higher than that obtained over $Ni/{\gamma}-Al_2O_3$. Also, the coke formation of $Ni/CeO_2-ZrO_2$ was lower than that of $Ni/{\gamma}-Al_2O_3$. Such results were attributed to the higher reducibility and better lattice oxygen mobility of $Ni/CeO_2-ZrO_2$, which were advantageous for partial oxidation reaction.

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.