Abstract
The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.