• Title/Summary/Keyword: $NiO_x$ thin film

Search Result 65, Processing Time 0.029 seconds

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Fabrication and characteristic of thin-film NTC thermal sensors (박막형 NTC 열형 센서의 제작 및 특성 평가)

  • Yoo, Mi-Na;Lee, Moon-Ho;Yu, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Characteristics of thin-film NTC thermal sensors fabricated by micromachining technology were studied as a function of the thickness of membrane. The overall-structure of thermal sensor has a form of Au/Ti/NTC/$SiO_{X}$/(100)Si. NTC film of $Mn_{1.5}CoNi_{0.5}O_{4}$ with 0.5 mm in thickness was deposited on $SiO_{X}$ layer (1.2 mm) by PLD (pulsed laser deposition) and annealed at 873-1073 K in air for 1 hour. Au(200 nm)/Ti(100 nm) electrode was coated on NTC film by dc sputtering. By the results of microstructure, X-ray and NTC analysis, post-annealed NTC films at 973 K for 1 hour showed the best characteristics as NTC thermal sensing film. In order to reduce the thermal mass and thermal time constant of sensor, the sensing element was built-up on a thin membrane with the thickness of 20-65 mm. Sensors with thin sensing membrane showed the good detecting characteristics.

RF Sputtered Lithium Nickel Oxide Films and Their Electrochromism (RF 스퍼터링에 의해 제조된 Li-Ni-O 박막의 전기변색 특성)

  • Kim, Young-Il;Kim, Bae-Whan;Choy, Jin-Ho;Campet, Guy;Park, Nam-Gyu;Portier, Josik;Morel, Bertrand
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.594-599
    • /
    • 1997
  • Lithium nickel oxide ($Li_{2x}Ni_{1-x}O$) thin films have been prepared by the RF sputtering of lithiated nickel oxide target, where the film microstructure was controlled by the sputtering atmosphere $(Ar/O_2)$ and the substrate temperature ($T_s=50/230^{\circ}C$). From the transmission electron microscopic analysis, it is found that the most porous film with the grain size of $∼80\AA$ could be fabricated under the sputtering atmosphere of $P(O_2)=8{\times}10^2$ mbar with the $$T_s$=50^{\circ}C.$ In the optical and electrochemical studies, the$Li_{2x}Ni_{1-x}O$ films exhibit a significant electrochromic property in association with the lithium insertion/deinsertion process. The amount of charge insertion ($Q_i$) and the optical density (OD) variation depend on the crystallinity of the film as well as its thickness, and for the $Li_{2x}Ni_{1-x}O$ film (170 nm thickness) prepared under $O_2$ atmosphere and $T_s=50^{\circ}C$, the OD could be increased up to ∼1.3 by the charge insertion with $Q_i=30\;mC/cm^2.$

  • PDF

The Characteristics of $PbTiO_{3}-PbZrO_{3}-Pb(Ni_{1/3}Nb_{2/3})O_{3}$ Piezoelectric Thin Film Made by Sol-Gel Method (Sol-Gel 법으로 제작한 $PbTiO_{3}-PbZrO_{3}-Pb(Ni_{1/3}Nb_{2/3})O_{3}$ 압전박막의 특성)

  • Yoon, Wha-Joong;Lim, Moo-Yeol;Koo, Kyung-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.75-80
    • /
    • 1995
  • In order to fabricate the piezoelectric thin film of the PZT-PNN ternary compound, the metal alkoxides were used as starting materials. The electrical and crystalline properties of the thin film were evaluated. The X- RD study shows that the crystallization of the film is optimized at $550^{\circ}C$ of sintering temperature. According to the D-E hysterisis curve, the coercive field is 28.8 kV /cm, and the remanent polariztion is $18.3\;{\mu}C/cm^{2}$. The break down voltages of the thin films are $76.0\;{\sim}\;27.0\;MV/m$. When the sintering temperature is raised, the break down voltage is lowered. As a result of measuring the C-V characteristic curve of the ternary compound piezoelectric thin film, the relative dielectric constants are 406 for the composition (50:40:10), 1084 for the composition (50:30:20), 723 for the composition (45:35:20) and 316 for the composition (40:40:20).

  • PDF

Electronic and Electrical Properties of Transparent Conducting Nickel Oxide Thin Films

  • Lee, Kang-Il;Kim, Beom-Sik;Kim, Ju-Hwan;Park, Soo-Jeong;Denny, Yus Rama;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.226-226
    • /
    • 2012
  • The electronic and electrical properties of nickel oxide (NiO) thin films were investigated by reflection electron energy loss spectroscopy (REELS), x-ray photoelectron spectroscopy (XPS), and Hall Effect measurements. REELS spectra revealed that the band gap of the NiO thin film was increased from 3.50 eV to 4.02 eV after annealing the sample at $800^{\circ}C$. Our XPS spectra showed that the amount of Ni2O3 decreased after annealing. The Hall Effect results showed that the doping type of the sample changed from n type to p type after annealing. The resistivity decreased drastically from $4.6{\times}10^3$ to $3.5{\times}10^{-2}$ ${\Omega}{\cdot}cm$. The mobility of NiO thin films was changed form $3.29{\times}10^3$ to $3.09{\times}10^5cm^2/V{\cdot}s$. Our results showed that the annealing temperature plays a crucial role in increasing the carrier concentration and the mobility which leads to lowering resistivity of NiO thin films.

  • PDF

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

Structural and Electrical Properties of [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 Spinel Thin Films for Infrared Sensor Application (적외선 센서용 [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 스피넬 박막의 구조 및 전기적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.825-830
    • /
    • 2014
  • $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ ($0{\leq}x{\leq}1$) thin films prepared by metal organic decomposition process were fabricated on SiN/Si substrate for infrared sensor application. Their structural and electrical properties were investigated with variation of Cu dopant. The $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ (CCNMO) film annealed at $500^{\circ}C$ exhibited a dense microstructure and a homogeneous crystal structure with a cubic spinel phase. Their crystallinity was further enhanced with increasing doped Cu amount. The 120 nm-thick CCNMO (x=0.6) thin film had a low resistivity of $53{\Omega}{\cdot}cm$ at room temperature while the Co-free film (x=1) showed a significantly decreased resistivity of $5.9{\Omega}{\cdot}cm$. Furthermore, the negative temperature coefficient of resistance (NTCR) characteristics were lower than $-2%/^{\circ}C$ for all the specimens with $x{\geq}0.6$. These results imply that the CCNMO ($x{\geq}0.6$) thin films are a good candidate material for infrared sensor application.

Electrical properties of sol-gel derived $ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ thin film (Sol-Gel 법에 의한$ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$)

  • 임무열;구경완;한상옥
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb $_{2}$3/O$_{3}$)(PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol rates of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20) and #4(40:40:20), respectively. The spin-coated PZT-PNN films were sintered at the temperature from 500.deg. C to 600.deg. C for crystallization. The P-E hysteresis curve was drawn by Sawyer-Tower circuit with PZT-PNN film. The coercive field and the remanent polarization of #4(40:40:20 mol%) PZT-PNN film were 28.8 kV/cm and 18.3 .mu.C/cm$^{2}$, respectively. Their dielectric constants were shown between 128 and 1120, and became maximum value in MPB(40:40:20 mol%). The leakage currents of PZT-PNN films were about 9.4x 10$^{-8}$ A/cm$^{2}$, and the breakdown voltages were about 0.14 and 1.1 MV/cm. The Curie point of #3(45:35:20 mol%, sintered at 600.deg. C) film was 330.deg. C.

  • PDF

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Influence of Substrate on Mechanical Characteristics of ZnO Thin Film by NI Technology (NI법에 의한 기계적 특성에 미치는 ZnO박막의 기판재의 영향)

  • Jung Hun-Cbae;KIM Dong-Hyun;Yoon Han-Ki;Lim Hee-Sup;Yu Yun-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.342-346
    • /
    • 2004
  • Recently there has been a great world-wide interest in developing and characterizing new nano-structured materials. These newly developed materials are often prepared in limited quantities and shapes unsuitable for the extensive mechanical testing. The development of depth sensing indentation methods have introduced the advantage of load and depth measurement during the indentation cycle. In the present work, ZnO thin films are prepared on the Glass, GaAs(100), Si(111), and Si(100) substrates at different temperatures by pulsed laser deposition(PLD) method. Because the potential energy in c-axis is law, the films always shaw c-axis orientation at the optimized conditions in spite of the different substrates. Thin films are investigated by X-ray diffractometer and Nano indentation equipment. From these measurements it is possible to get elastic modulus and hardness of ZnO thin films on all substrates.

  • PDF