DOI QR코드

DOI QR Code

Structural and Electrical Properties of [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 Spinel Thin Films for Infrared Sensor Application

적외선 센서용 [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 스피넬 박막의 구조 및 전기적 특성

  • Lee, Kui Woong (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Chang Jun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yoon, Jong-Won (Department of Advanced Materials Science and Engineering, Dankook University)
  • 이귀웅 (한국세라믹기술원 지능형전자부품팀) ;
  • 전창준 (한국세라믹기술원 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 지능형전자부품팀) ;
  • 윤종원 (단국대학교 신소재공학과)
  • Received : 2014.09.17
  • Accepted : 2014.11.24
  • Published : 2014.12.01

Abstract

$[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ ($0{\leq}x{\leq}1$) thin films prepared by metal organic decomposition process were fabricated on SiN/Si substrate for infrared sensor application. Their structural and electrical properties were investigated with variation of Cu dopant. The $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ (CCNMO) film annealed at $500^{\circ}C$ exhibited a dense microstructure and a homogeneous crystal structure with a cubic spinel phase. Their crystallinity was further enhanced with increasing doped Cu amount. The 120 nm-thick CCNMO (x=0.6) thin film had a low resistivity of $53{\Omega}{\cdot}cm$ at room temperature while the Co-free film (x=1) showed a significantly decreased resistivity of $5.9{\Omega}{\cdot}cm$. Furthermore, the negative temperature coefficient of resistance (NTCR) characteristics were lower than $-2%/^{\circ}C$ for all the specimens with $x{\geq}0.6$. These results imply that the CCNMO ($x{\geq}0.6$) thin films are a good candidate material for infrared sensor application.

Keywords

References

  1. S. S. Falahatgar, F. E. Ghodsi, F. Z. Tepehan, G. G. Tepehan, and I. Turhan, Appl. Surf. Sci., 289, 289 (2014). https://doi.org/10.1016/j.apsusc.2013.10.153
  2. N. M. Deraz and O. H. Abd-Elkader, Int. J. Electrochem. Sci., 8, 10112 (2013).
  3. C. H. Chen, X. Yi, J. Zhang, and X. Zhao, Infrared Physics & Technology, 42, 87 (2001). https://doi.org/10.1016/S1350-4495(01)00058-5
  4. S. A. Kanade and V. Puri, Mater. Lett., 60, 1428(2006). https://doi.org/10.1016/j.matlet.2005.11.042
  5. J. Huang, Y. Hao, H. Lin, D. Zhang, J. Song and D. Zhou, Mater. Sci. Eng. B, 99, 523 (2003). https://doi.org/10.1016/S0921-5107(02)00547-0
  6. M. Lee and M. Yoo, Sensor. Actuator. Phys., 96, 97 (2002). https://doi.org/10.1016/S0924-4247(01)00769-5
  7. J. R. Yoon, J. G. Kim, J. Y. Kwon, H. Y. Lee, and S. W. Lee, J. KIEEME, 13, 472 (2000).
  8. S. W. Ko, J. Li, and S. T. Mckinstry, Thin Solid Films, 522, 129 (2012). https://doi.org/10.1016/j.tsf.2012.08.047
  9. K. W. Lee, C. J. Jeon, Y. H. Jeong, J. S. Yun, J. H. Nam, J. H. Cho, J. H. Paik, and J. W. Yoon, J. KIEEME, 27, 266 (2014).
  10. Y. Wang and B. Eng, Material Science & Engineering (McMaster University, Canada, 2013) p. 21.
  11. R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005). https://doi.org/10.1063/1.1866643
  12. R. Metz, J. Mater. Sci., 35, 4705 (2000). https://doi.org/10.1023/A:1004851022668