• 제목/요약/키워드: $Newmark-{\beta}$ method

검색결과 89건 처리시간 0.017초

Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석 (Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method)

  • 김종인;강성승
    • 터널과지하공간
    • /
    • 제20권4호
    • /
    • pp.292-298
    • /
    • 2010
  • 본 연구는 발파진동에 의한 지반진동이 구조물에 미치는 영향을 평가하기 위함이다. 이를 위하여 지반에서 측정한 자료를 토대로 Newmark $\beta$ 방법을 이용하여 단자유도계(SDOF)를 가정한 구조물 동적응답 시간이력과 구조물에서 직접 측정한 진동 시간이력을 비교 하였다. 지반과 구조물의 측정 자료로부터 시간이력을 해석한 결과, 단일공 발파와 20 ms 단차 발파에서 지반진동과 구조물 사이의 진동 크기는 약 3배의 차이로 구조물에서 더 큰 진동을 보이는 것으로 나타났다. 구조물 동적응답 시간이력을 해석한 결과, 그 값은 구조물에서 직접 측정한 자료와 유사한 최대 진동속도를 보였으며, 이것은 구조물 하부 지반에서 측정된 지반진동 측정자료에 근거하여 구조물의 진동특성을 예측할 수 있음을 지시한다.

Dynamic interaction analysis of vehicle-bridge system using transfer matrix method

  • Xiang, Tianyu;Zhao, Renda
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.111-121
    • /
    • 2005
  • The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this paper. The vehicle model is simplified as a spring-damping-mass system. By adopting the idea of Newmark-${\beta}$ method, the partial differential equation of structure vibration is transformed into a differential equation irrelevant to time. Then, this differential equation is solved by transfer matrix method. The prospective application of this method in real engineering is finally demonstrated by several examples.

EDF 시스템의 동적 특성 연구를 위한 모델링 개발 (Development of Modeling for Dynamic Response of EDF System)

  • 한규승;박선규;이인원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.218-227
    • /
    • 2001
  • 논문에서는 여러 면진장치 중의 하나인 EDF(Electricite De France)시스템의 거동 특성에 대해서 연구하였다. 우선, 범용 유한요소 프로그램의 요소인 Nllink element를 사용하여 합리적인 EDF 시스템의 모델링 기법을 제시하였다. 그리고, 조화함수를 외력으로 주었을 때 시스템의 운동방정식의 이론해와 유한요소 프로그램을 통한 수치해를 서로 비교하여 모델링의 타당성을 검증하였다. 또, Newmark-${\beta}$법을 이용하여 실제 지진 가속도를 입력하였을 때의 거동을 비교함으로서 모델링의타당성을 검증하였다. 이렇게 검증된 모델링을 실제 교량이나 다자유도 구조물에 적용할 수 있다.

  • PDF

시간영역에서 초대형 부유식 해양구조물에 대한 유탄성 응답 해석 (Hydroelastic Responses of a Very Large Floating Structure in Time Domain)

  • 이호영;신현경
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.29-34
    • /
    • 2000
  • This paper describes transient responses of a very floating structure subjected to dynamic load induced by waves. A time domain method is applied to the hydroelastic problems for this purpose. The method is based on source-dipole and FEM scheme and on Newmark $\beta$ method to pursuit time step process taking advantage of memory effect. The present procedure is carried out to analyze hydroelastic responses in regular waves and impact responses due to dropping aircraft.

  • PDF

시간영역에서 초대형 부유식 해양구조물에 대한 유탄성 운동해석 (Hydroelastic Responses of a Very Large Floating Structure in Time Domain)

  • 이호영;신현경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.18-22
    • /
    • 2000
  • This paper is transient motions of a very large floating structure subjected to dynamic load induced by wave. A time domain method is applied to the hydroelasticity problems for this purpose. The method is based on source-dipole and FEM scheme and on Newmark $\beta$ method to pursuit time step process taking advantage of the memory effect. The present method is appied to hydroelastic response analysis in regular waves and impact responses due to dropping aircraft.

  • PDF

항공기 이 .착륙 시 초대형 부유식 해양구조물의 시간 영역 응답 해석 (Transient Responses of an Airplane Taking off from and Landing Very Large Floating Stricture in Waves)

  • 신현경;이호영;임춘규;강점문;윤명철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.63-67
    • /
    • 2000
  • Up to this day, Most studies of hydroelasticity are inclined to frequency domain atnlysis. Thos amlysis Q the landing, take-4, and dropping of airaqft on a structure. So, the concern of this prrper is a tra a VLFS subjected to dymmic lazd induced by airplane larndirrg and take-off. To predict added mass, dampr exciting force, the source-dipole distribution method were used The responses are accomplished by Fdoimain analysis method is based on Newmark $\beta$ method to pursuit time step pnzcedure taking advantage function for hvdrodvnumic effects.

  • PDF

Analysis of the 3-D Stress Wave in a Plate under Impact Load by Finite Element Method

  • Jin, Sung-Hoon;Hwang, Gab-Woon;Cho, Kyu-Zong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.5-10
    • /
    • 2001
  • This paper attempt to explore the shape of stress wave propagation of 3-dimensional stress field which in made in the process of the time increment. A finite element program about 3-dimensional stress wave propagation is developed for investigating the changing shape of the stress by the impact load. The finite element program, which is the solution for the 3-dimensional stress wave analysis, based on Galerkin and Newmark-${\beta}$ method at time increment step. The tensile stress and compressive stress become larger with the order of the middle , the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

선박의 충돌로 인한 해양구조물의 거동 해석 (Behaviour Analyses of Ocean Structure Due to Ship Collision)

  • 이호영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2001
  • When ship claps against the ocean structure sited at shallow water, the time simulation of motion responses of dolphin-moored ocean structure is presented. The equatien of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The added mass and damping coefficients involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The impact forces due to ship collision are modeled as two method, and those are elastic and non-elastic collisions. The mooring forces for dolphin systems of scean structure are considered as linear spring system.

  • PDF

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

불규칙파 중에서 돌핀 계류된 바아지식 해상공장에 대한 비선형 응답 해석 (Nonlinear Response Analyses for a Barge-Mounted Plant with Dolphin Mooring Systems in Irregular Waves)

  • 이호영;신현경;염재선
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 2000
  • The time simulation of motion responses of dolphin-moored BMP in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The hydrodynamic coefficient and first order wave exciting forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The second order wave drift forces and mooring for dolphin system are taken into account. As for numerical example, time domain analysis are carried out for a BMP in irregular wave condition.

  • PDF